Suppr超能文献

习得性恐惧在皮质感觉处理中的反映:人类经典条件反射的电生理学研究综述。

Acquired fears reflected in cortical sensory processing: a review of electrophysiological studies of human classical conditioning.

机构信息

Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Psychophysiology. 2012 Sep;49(9):1230-41. doi: 10.1111/j.1469-8986.2012.01398.x. Epub 2012 Jun 21.

Abstract

The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning-related changes in neural structure and function. Here, we review the effects of classical fear conditioning on electromagnetic brain activity in humans, focusing on how sensory systems adapt to changing fear-related contingencies. By considering spatiotemporal patterns of mass neuronal activity, we illustrate a range of cortical changes related to a retuning of neuronal sensitivity to amplify signals consistent with fear-associated stimuli at the cost of other sensory information. Putative mechanisms that may underlie fear-associated plasticity at the level of the sensory cortices are briefly considered, and several avenues for future work are outlined.

摘要

将中性刺激与情感价值联系起来的能力是一种重要的生存策略,可以通过遵循赫布学习原则的细胞集合来实现。在神经科学实验室中,经典的恐惧条件作用已被广泛用作研究神经结构和功能与学习相关变化的模型。在这里,我们回顾了经典恐惧条件作用对人类电磁脑活动的影响,重点关注感觉系统如何适应不断变化的与恐惧相关的偶然性。通过考虑大规模神经元活动的时空模式,我们说明了一系列与神经元对与恐惧相关的刺激的敏感性重新调整相关的皮质变化,这种重新调整是以牺牲其他感觉信息为代价的。简要考虑了可能在感觉皮质水平上产生与恐惧相关的可塑性的潜在机制,并概述了未来工作的几个途径。

相似文献

1
Acquired fears reflected in cortical sensory processing: a review of electrophysiological studies of human classical conditioning.
Psychophysiology. 2012 Sep;49(9):1230-41. doi: 10.1111/j.1469-8986.2012.01398.x. Epub 2012 Jun 21.
2
Ultrafast Cortical Gain Adaptation in the Human Brain by Trial-To-Trial Changes of Associative Strength in Fear Learning.
J Neurosci. 2018 Sep 19;38(38):8262-8276. doi: 10.1523/JNEUROSCI.0977-18.2018. Epub 2018 Aug 13.
3
Classical conditioning in oddball paradigm: A comparison between aversive and name conditioning.
Psychophysiology. 2019 Jul;56(7):e13370. doi: 10.1111/psyp.13370. Epub 2019 Mar 25.
4
Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala.
Learn Mem. 2004 Nov-Dec;11(6):761-9. doi: 10.1101/lm.83604. Epub 2004 Nov 10.
5
Learning dynamics of electrophysiological brain signals during human fear conditioning.
Neuroimage. 2021 Feb 1;226:117569. doi: 10.1016/j.neuroimage.2020.117569. Epub 2020 Nov 20.
7
Sleep sharpens sensory stimulus coding in human visual cortex after fear conditioning.
Neuroimage. 2014 Oct 15;100:608-18. doi: 10.1016/j.neuroimage.2014.06.003. Epub 2014 Jun 14.
8
Learning-induced intrinsic and synaptic plasticity in the rodent medial prefrontal cortex.
Neurobiol Learn Mem. 2020 Mar;169:107117. doi: 10.1016/j.nlm.2019.107117. Epub 2019 Nov 23.
10

引用本文的文献

1
The impact of inherently aversive contexts on visuocortical processing of generalized threat.
Imaging Neurosci (Camb). 2025 Jul 7;3. doi: 10.1162/IMAG.a.74. eCollection 2025.
2
Generalized expectancy of threat in threatening compared to safe contexts.
Soc Cogn Affect Neurosci. 2025 Jan 4;20(1). doi: 10.1093/scan/nsae097.
3
Quantifying population-level neural tuning functions using Ricker wavelets and the Bayesian bootstrap.
J Neurosci Methods. 2025 Jan;413:110303. doi: 10.1016/j.jneumeth.2024.110303. Epub 2024 Oct 19.
4
Acquisition and generalization of emotional and neural responses to faces associated with negative and positive feedback behaviours.
Front Neurosci. 2024 Aug 5;18:1399948. doi: 10.3389/fnins.2024.1399948. eCollection 2024.
5
Quantifying Population-level Neural Tuning Functions Using Ricker Wavelets and the Bayesian Bootstrap.
bioRxiv. 2024 May 23:2024.05.22.595429. doi: 10.1101/2024.05.22.595429.
6
Emergence of Emotion Selectivity in Deep Neural Networks Trained to Recognize Visual Objects.
PLoS Comput Biol. 2024 Mar 28;20(3):e1011943. doi: 10.1371/journal.pcbi.1011943. eCollection 2024 Mar.
10
EEG Microstates in Social and Affective Neuroscience.
Brain Topogr. 2024 Jul;37(4):479-495. doi: 10.1007/s10548-023-00987-4. Epub 2023 Jul 31.

本文引用的文献

2
When fear forms memories: threat of shock and brain potentials during encoding and recognition.
Cortex. 2013 Mar;49(3):819-26. doi: 10.1016/j.cortex.2012.02.012. Epub 2012 Mar 8.
3
Cholinergic enhancement of visual attention and neural oscillations in the human brain.
Curr Biol. 2012 Mar 6;22(5):397-402. doi: 10.1016/j.cub.2012.01.022. Epub 2012 Feb 2.
4
Controlling the elements: an optogenetic approach to understanding the neural circuits of fear.
Biol Psychiatry. 2012 Jun 15;71(12):1053-60. doi: 10.1016/j.biopsych.2011.10.023. Epub 2011 Dec 14.
5
Molecular mechanisms of fear learning and memory.
Cell. 2011 Oct 28;147(3):509-24. doi: 10.1016/j.cell.2011.10.009.
6
Tagging cortical networks in emotion: a topographical analysis.
Hum Brain Mapp. 2012 Dec;33(12):2920-31. doi: 10.1002/hbm.21413. Epub 2011 Sep 23.
7
Gamma-band activation predicts both associative memory and cortical plasticity.
J Neurosci. 2011 Sep 7;31(36):12748-58. doi: 10.1523/JNEUROSCI.2528-11.2011.
8
Plasticity of human auditory-evoked fields induced by shock conditioning and contingency reversal.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12545-50. doi: 10.1073/pnas.1016124108. Epub 2011 Jul 11.
9
Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction.
PLoS One. 2011;6(6):e21714. doi: 10.1371/journal.pone.0021714. Epub 2011 Jun 28.
10
Rapid and highly resolving: affective evaluation of olfactorily conditioned faces.
J Cogn Neurosci. 2012 Jan;24(1):17-27. doi: 10.1162/jocn_a_00067. Epub 2011 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验