Suppr超能文献

听觉诱发电位的可塑性:由休克条件作用和偶发逆转引起。

Plasticity of human auditory-evoked fields induced by shock conditioning and contingency reversal.

机构信息

Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK.

出版信息

Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12545-50. doi: 10.1073/pnas.1016124108. Epub 2011 Jul 11.

Abstract

We used magnetoencephalography (MEG) to assess plasticity of human auditory cortex induced by classical conditioning and contingency reversal. Participants listened to random sequences of high or low tones. A first baseline phase presented these without further associations. In phase 2, one of the frequencies (CS(+)) was paired with shock on half its occurrences, whereas the other frequency (CS(-)) was not. In phase 3, the contingency assigning CS(+) and CS(-) was reversed. Conditioned pupil dilation was observed in phase 2 but extinguished in phase 3. MEG revealed that, during phase-2 initial conditioning, the P1m, N1m, and P2m auditory components, measured from sensors over auditory temporal cortex, came to distinguish between CS(+) and CS(-). After contingency reversal in phase 3, the later P2m component rapidly reversed its selectivity (unlike the pupil response) but the earlier P1m did not, whereas N1m showed some new learning but not reversal. These results confirm plasticity of human auditory responses due to classical conditioning, but go further in revealing distinct constraints on different levels of the auditory hierarchy. The later P2m component can reverse affiliation immediately in accord with an updated expectancy after contingency reversal, whereas the earlier auditory components cannot. These findings indicate distinct cognitive and emotional influences on auditory processing.

摘要

我们使用脑磁图(MEG)来评估经典条件作用和关联反转引起的人类听觉皮层的可塑性。参与者聆听高频或低频随机序列。在第一基线阶段,这些声音没有进一步的关联。在第二阶段,其中一个频率(CS(+))在其一半出现时与冲击配对,而另一个频率(CS(-))则没有。在第三阶段,分配 CS(+)和 CS(-)的关联被反转。在第二阶段的初始条件作用期间观察到条件性瞳孔扩张,但在第三阶段消失。MEG 显示,在第二阶段初始条件作用期间,从听觉颞叶皮层传感器测量的 P1m、N1m 和 P2m 听觉成分开始区分 CS(+)和 CS(-)。在第三阶段关联反转后,较晚的 P2m 成分迅速反转其选择性(与瞳孔反应不同),而较早的 P1m 没有,而 N1m 显示出一些新的学习但没有反转。这些结果证实了人类听觉反应由于经典条件作用而产生的可塑性,但更进一步地揭示了听觉层次不同水平上的不同限制。在关联反转后,根据更新的预期,较晚的 P2m 成分可以立即反转其关联,而较早的听觉成分则不能。这些发现表明,认知和情绪对听觉处理有不同的影响。

相似文献

1
Plasticity of human auditory-evoked fields induced by shock conditioning and contingency reversal.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12545-50. doi: 10.1073/pnas.1016124108. Epub 2011 Jul 11.
3
4
Tracking short-term auditory cortical plasticity during classical conditioning using frequency-tagged stimuli.
Cereb Cortex. 2007 Aug;17(8):1867-76. doi: 10.1093/cercor/bhl095. Epub 2006 Oct 19.
6
Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig.
Brain Res. 1990 Dec 17;536(1-2):271-86. doi: 10.1016/0006-8993(90)90035-a.
7
Why do humans have unique auditory event-related fields? Evidence from computational modeling and MEG experiments.
Psychophysiology. 2021 Apr;58(4):e13769. doi: 10.1111/psyp.13769. Epub 2021 Jan 21.
10

引用本文的文献

2
Fear memory in humans is consolidated over time independently of sleep.
Cogn Affect Behav Neurosci. 2023 Feb;23(1):100-113. doi: 10.3758/s13415-022-01037-5. Epub 2022 Oct 14.
3
Characterizing cardiac autonomic dynamics of fear learning in humans.
Psychophysiology. 2022 Dec;59(12):e14122. doi: 10.1111/psyp.14122. Epub 2022 Jun 7.
4
Associative learning shapes visual discrimination in a web-based classical conditioning task.
Sci Rep. 2021 Aug 3;11(1):15762. doi: 10.1038/s41598-021-95200-6.
5
Cortical plasticity elicited by acoustically cued monetary losses: an ERP study.
Sci Rep. 2020 Dec 3;10(1):21161. doi: 10.1038/s41598-020-78211-7.
7
Learning to see the threat: temporal dynamics of ERPs of motivated attention in fear conditioning.
Soc Cogn Affect Neurosci. 2019 Feb 13;14(2):189-203. doi: 10.1093/scan/nsy103.
8
The Pupil Dilation Response to Auditory Stimuli: Current State of Knowledge.
Trends Hear. 2018 Jan-Dec;22:2331216518777174. doi: 10.1177/2331216518777174.
9
Stimulus-invariant auditory cortex threat encoding during fear conditioning with simple and complex sounds.
Neuroimage. 2018 Feb 1;166:276-284. doi: 10.1016/j.neuroimage.2017.11.009. Epub 2017 Nov 6.
10
Assessing fear learning via conditioned respiratory amplitude responses.
Psychophysiology. 2017 Feb;54(2):215-223. doi: 10.1111/psyp.12778. Epub 2016 Dec 8.

本文引用的文献

1
Erasing fear memories with extinction training.
J Neurosci. 2010 Nov 10;30(45):14993-7. doi: 10.1523/JNEUROSCI.4268-10.2010.
2
Learning related activation of somatosensory cortex by an auditory stimulus recorded with magnetoencephalography.
Neuroimage. 2010 Oct 15;53(1):275-82. doi: 10.1016/j.neuroimage.2010.06.005. Epub 2010 Jun 9.
3
Sound processing hierarchy within human auditory cortex.
J Cogn Neurosci. 2011 Aug;23(8):1855-63. doi: 10.1162/jocn.2010.21521. Epub 2010 Jun 3.
4
Overlapping neural systems mediating extinction, reversal and regulation of fear.
Trends Cogn Sci. 2010 Jun;14(6):268-76. doi: 10.1016/j.tics.2010.04.002. Epub 2010 May 20.
5
The medial geniculate, not the amygdala, as the root of auditory fear conditioning.
Hear Res. 2011 Apr;274(1-2):61-74. doi: 10.1016/j.heares.2010.03.093. Epub 2010 May 11.
7
Prefrontal control of fear: more than just extinction.
Curr Opin Neurobiol. 2010 Apr;20(2):231-5. doi: 10.1016/j.conb.2010.02.005. Epub 2010 Mar 18.
8
Human fear conditioning and extinction in neuroimaging: a systematic review.
PLoS One. 2009 Jun 10;4(6):e5865. doi: 10.1371/journal.pone.0005865.
9
Association learning-dependent increases in acetylcholine release in the rat auditory cortex during auditory classical conditioning.
Neurobiol Learn Mem. 2009 Oct;92(3):400-9. doi: 10.1016/j.nlm.2009.05.006. Epub 2009 May 23.
10
Circular analysis in systems neuroscience: the dangers of double dipping.
Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验