Suppr超能文献

在多晶金属上生长石墨烯薄膜。

Graphene film growth on polycrystalline metals.

机构信息

Department of Chemistry, Durham University, UK.

出版信息

Acc Chem Res. 2013 Jan 15;46(1):23-30. doi: 10.1021/ar3001266. Epub 2012 Aug 15.

Abstract

Graphene, a true wonder material, is the newest member of the nanocarbon family. The continuous network of hexagonally arranged carbon atoms gives rise to exceptional electronic, mechanical, and thermal properties, which could result in the application of graphene in next generation electronic components, energy-storage materials such as capacitors and batteries, polymer nanocomposites, transparent conducting electrodes, and mechanical resonators. With one particularly attractive application, optically transparent conducting electrodes or films, graphene has the potential to rival indium tin oxide (ITO) and become a material for producing next generation displays, solar cells, and sensors. Typically, graphene has been produced from graphite using a variety of methods, but these techniques are not suitable for growing large-area graphene films. Therefore researchers have focused much effort on the development of methodology to grow graphene films across extended surfaces. This Account describes current progress in the formation and control of graphene films on polycrystalline metal surfaces. Researchers can grow graphene films on a variety of polycrystalline metal substrates using a range of experimental conditions. In particular, group 8 metals (iron and ruthenium), group 9 metals (cobalt, rhodium, and iridium), group 10 metals (nickel and platinum), and group 11 metals (copper and gold) can support the growth of these films. Stainless steel and other commercial copper-nickel alloys can also serve as substrates for graphene film growth. The use of copper and nickel currently predominates, and these metals produce large-area films that have been efficiently transferred and tested in many electronic devices. Researchers have grown graphene sheets more than 30 in. wide and transferred them onto display plastic ready for incorporation into next generation displays. The further development of graphene films in commercial applications will require high-quality, reproducible growth at ambient pressure and low temperature from cheap, readily available carbon sources. The growth of graphene on metal surfaces has drawbacks: researchers must transfer the graphene from the metal substrate or remove the metal by etching. Further research is needed to overcome these transfer and removal challenges.

摘要

石墨烯,一种真正的神奇材料,是纳米碳家族的最新成员。其由六边形排列的碳原子组成的连续网络赋予了它非凡的电子、机械和热性能,这可能导致石墨烯在下一代电子元件、电容器和电池等储能材料、聚合物纳米复合材料、透明导电电极和机械谐振器中的应用。特别是在光学透明导电电极或薄膜方面,石墨烯有可能与铟锡氧化物(ITO)竞争,并成为生产下一代显示器、太阳能电池和传感器的材料。通常,石墨烯是通过各种方法从石墨中制备的,但这些技术并不适合生长大面积的石墨烯薄膜。因此,研究人员将大量精力集中在开发在扩展表面上生长石墨烯薄膜的方法上。本综述描述了在多晶金属表面上形成和控制石墨烯薄膜的当前进展。研究人员可以在多种多晶金属基底上使用一系列实验条件生长石墨烯薄膜。特别是第 8 族金属(铁和钌)、第 9 族金属(钴、铑和铱)、第 10 族金属(镍和铂)和第 11 族金属(铜和金)可以支持这些薄膜的生长。不锈钢和其他商用铜镍合金也可以作为石墨烯薄膜生长的基底。目前,铜和镍的使用最为普遍,这些金属可以生长大面积的薄膜,并且已经在许多电子设备中进行了高效的转移和测试。研究人员已经生长了超过 30 英寸宽的石墨烯片,并将其转移到显示塑料上,准备用于下一代显示器。要将石墨烯薄膜进一步开发应用于商业领域,需要在廉价、易得的碳源条件下,在环境压力和低温下实现高质量、可重复的生长。在金属表面生长石墨烯存在一些缺点:研究人员必须将石墨烯从金属基底上转移下来,或者通过刻蚀去除金属。需要进一步研究来克服这些转移和去除挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验