Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
Hum Mol Genet. 2012 Nov 15;21(22):4996-5009. doi: 10.1093/hmg/dds335. Epub 2012 Aug 13.
Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17-38, P = 8.08E - 08) phenotypic variance associated with all types of PD, 15% (95% CI -0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17-44, P = 1.34E - 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered.
全基因组关联研究 (GWAS) 已成功鉴定出与常见性状高度相关的单核苷酸多态性 (SNP);然而,与常见性状相关的可遗传变异很大一部分仍未在基因组中得到解释。全基因组复杂性状分析 (GCTA) 是一种统计方法,它应用线性混合模型来估计由全基因组 SNP 解释的复杂性状的表型方差,包括与 GWAS 中没有关联的 SNP。我们应用 GCTA 分析了 8 个队列,这些队列包含 7096 例病例和 19455 例欧洲血统对照个体,以检查帕金森病 (PD) 中存在的遗传缺失。我们对我们的初步结果进行了荟萃分析,为跨队列的 PD 类型产生了稳健的遗传率估计值。我们的结果确定了与所有类型 PD 相关的 27%(95%CI 17-38,P = 8.08E-08)表型方差,与早发性 PD 相关的 15%(95%CI -0.2 至 33,P = 0.09)表型方差,与晚发性 PD 相关的 31%(95%CI 17-44,P = 1.34E-05)表型方差。这与通过顶级 GWAS 命中单独确定的遗传方差(3%至 5%之间)相比有了实质性的增加,这表明有更多的风险位点有待发现。我们的研究结果表明,尽管 GWAS 是识别与复杂疾病最常见变异体相关的有用工具,但仍有大量具有小效应的常见变异体有待发现。