IEEE Trans Med Imaging. 2012 Nov;31(11):2156-2168. doi: 10.1109/TMI.2012.2212450. Epub 2012 Aug 8.
Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound orMR images) and known external forces.Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation.
组织硬度的估计是一种重要的非侵入性癌症检测手段。现有的弹性重建方法通常依赖于密集的位移场(从超声或磁共振图像推断)和已知的外力。然而,许多成像方式无法提供器官内的细节,因此无法提供这样的位移场。此外,对于一些内部器官来说,施加和测量力可能很困难,使得边界力成为另一个缺失的参数。我们提出了一种使用迭代优化框架自动估计弹性和边界力的通用方法,给定所需的(目标)输出表面。在优化过程中,模拟器会使输入模型变形,然后通过数值最小化基于变形表面和目标表面之间距离的目标函数。优化框架不依赖于特定的模拟方法,因此适用于不同的物理模型。我们显示了临床前列腺癌分期(一种严重程度的临床衡量标准)与器官恢复弹性之间的正相关性。由于建立了表面对应关系,我们的方法还提供了一种非刚性图像配准,其中保证了变形场的质量,因为它们是使用基于物理的模拟计算的。