Datta Jharna, Ghoshal Kalpana, Motiwala Tasneem, Jacob Samson T
Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
Genes Cancer. 2012 Jan;3(1):71-81. doi: 10.1177/1947601912452665.
We have previously demonstrated proteasomal degradation of DNMT1 in mammalian cells following treatment with several DNA hypomethylating agents. Here, we demonstrate dose-dependent degradation of Dnmt1 in mouse embryonic stem (ES) cells expressing catalytic site mutant (cys-ser), confirming that the covalent bond formation between Dnmt1 and decitabine-incorporated DNA is not essential for this process. DNMT1o, the oocyte-specific isoform that lacks the N-terminal 118-amino acid domain, did not undergo decitabine-mediated degradation, which further proves the requirement of multiple domains including nuclear localization signal, KEN box, and BAH domains for this process. Analysis of glycerol density gradient fractions of micrococcal nuclease-digested nuclei showed that both nucleosomal and nucleoplasmic DNMT1 are degraded upon decitabine treatment. Among different inhibitors tested, the inhibitors of the proteasomal pathway and several protein kinases impeded decitabine-induced DNMT1 degradation. The maximal effect caused by inhibiting protein kinase C (PKC) persuaded us to investigate further its role in decitabine-mediated DNMT1 degradation. Blockage of the degradation process after treatment with rottlerin, an inhibitor of PKCδ, or after siRNA-mediated depletion of PKCδ, indicated that this protein kinase is involved in decitabine-mediated depletion of DNMT1. PKCδ interacted with and phosphorylated DNMT1 in vitro. Moreover, rottlerin inhibited both basal and decitabine-induced phosphorylation of DNMT1. These studies provide substantial evidence that decitabine-induced degradation of the maintenance methyltransferase DNMT1 does not require covalent bond formation with the substrate and also elucidate its underlying molecular mechanism.
我们之前已经证明,在用几种DNA去甲基化剂处理后,哺乳动物细胞中DNMT1会发生蛋白酶体降解。在此,我们证明了在表达催化位点突变体(半胱氨酸-丝氨酸)的小鼠胚胎干细胞(ES细胞)中,Dnmt1的降解呈剂量依赖性,这证实了Dnmt1与掺入地西他滨的DNA之间的共价键形成对于该过程并非必不可少。DNMT1o是卵母细胞特异性异构体,缺乏N端118个氨基酸结构域,它不会经历地西他滨介导的降解,这进一步证明了该过程需要包括核定位信号、KEN框和BAH结构域在内的多个结构域。对微球菌核酸酶消化的细胞核进行甘油密度梯度分级分析表明,地西他滨处理后,核小体和核质中的DNMT1都会被降解。在测试的不同抑制剂中,蛋白酶体途径抑制剂和几种蛋白激酶抑制剂阻碍了地西他滨诱导的DNMT1降解。抑制蛋白激酶C(PKC)所产生的最大效应促使我们进一步研究其在地西他滨介导的DNMT1降解中的作用。用PKCδ抑制剂rottlerin处理后或通过小干扰RNA(siRNA)介导耗尽PKCδ后阻断降解过程,表明该蛋白激酶参与了地西他滨介导的DNMT1耗尽。PKCδ在体外与DNMT1相互作用并使其磷酸化。此外,rottlerin抑制了DNMT1的基础磷酸化和地西他滨诱导的磷酸化。这些研究提供了大量证据,表明地西他滨诱导的维持性甲基转移酶DNMT1降解不需要与底物形成共价键,并且还阐明了其潜在的分子机制。