Centre National de la Recherche Scientifique, Laboratoire d’Analyse et d’Architecture des Systèmes-LAAS, Toulouse, France.
Sci Rep. 2012;2:575. doi: 10.1038/srep00575. Epub 2012 Aug 14.
Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain.
耐药性是一个可以通过纳米技术来解决的挑战。我们专注于研究铜绿假单胞菌的耐药性,并使用原子力显微镜(AFM)来研究一种参考菌株和一种多药耐药的临床菌株的行为,这两种菌株都分别接受了两种抗生素和一种创新的抗菌药物(CX1)的处理。我们在生理条件下以及在暴露于抗菌分子的情况下测量了细菌的形态、表面粗糙度和弹性。为了进一步探究分子的作用机制,我们使用功能化的 AFM 探针探索了细菌细胞壁的纳米级组织。我们已经证明,受影响的细胞的细胞壁在分子水平上是紊乱的;令人惊讶的是,当用凝集素探针从细胞壁上拉取时,长分子被拉了下来。最后,我们阐明了 CX1 的作用机制:它破坏了细菌的外膜,这一点在人工磷脂膜和耐药菌株上的实验结果中得到了证明。