Suppr超能文献

基于心理物理的选点与双耳分听刺激相结合,可改善双侧人工耳蜗植入者在噪声环境中的言语识别。

Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants.

机构信息

Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan 48109-5616, USA.

出版信息

J Acoust Soc Am. 2012 Aug;132(2):994-1008. doi: 10.1121/1.4730907.

Abstract

The ability to perceive important features of electrical stimulation varies across stimulation sites within a multichannel implant. The aim of this study was to optimize speech processor MAPs for bilateral implant users by identifying and removing sites with poor psychophysical performance. The psychophysical assessment involved amplitude-modulation detection with and without a masker, and a channel interaction measure quantified as the elevation in modulation detection thresholds in the presence of the masker. Three experimental MAPs were created on an individual-subject basis using data from one of the three psychophysical measures. These experimental MAPs improved the mean psychophysical acuity across the electrode array and provided additional advantages such as increasing spatial separations between electrodes and/or preserving frequency resolution. All 8 subjects showed improved speech recognition in noise with one or more experimental MAPs over their everyday-use clinical MAP. For most subjects, phoneme and sentence recognition in noise were significantly improved by a dichotic experimental MAP that provided better mean psychophysical acuity, a balanced distribution of selected stimulation sites, and preserved frequency resolution. The site-selection strategies serve as useful tools for evaluating the importance of psychophysical acuities needed for good speech recognition in implant users.

摘要

感知电刺激重要特征的能力会因多通道植入物内的刺激部位而异。本研究的目的是通过识别和去除具有较差心理物理性能的部位,为双侧植入物使用者优化言语处理器的 MAP。心理物理评估包括有和没有掩蔽的调幅检测,以及作为掩蔽存在时调制检测阈值升高的量化的通道相互作用测量。使用来自三种心理物理测量方法之一的数据,在个体基础上创建了三个实验性 MAP。这些实验性 MAP 提高了电极阵列的平均心理物理敏锐度,并提供了额外的优势,例如增加电极之间的空间分离和/或保持频率分辨率。所有 8 名受试者在噪声中的言语识别能力都因一种或多种实验性 MAP 而得到改善,这些 MAP 优于他们日常使用的临床性 MAP。对于大多数受试者来说,双声道实验性 MAP 可显著提高语音识别在噪声中的能力,该 MAP 提供了更好的平均心理物理敏锐度、选择刺激部位的平衡分布和保留频率分辨率。这些部位选择策略可作为评估植入物使用者良好言语识别所需的心理物理敏锐度重要性的有用工具。

相似文献

2
Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users.
J Acoust Soc Am. 2011 Jun;129(6):3916-33. doi: 10.1121/1.3583503.
3
Relationship between multipulse integration and speech recognition with cochlear implants.
J Acoust Soc Am. 2014 Sep;136(3):1257. doi: 10.1121/1.4890640.
4
Improving speech perception in noise with current focusing in cochlear implant users.
Hear Res. 2013 May;299:29-36. doi: 10.1016/j.heares.2013.02.004. Epub 2013 Mar 1.
5
Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users.
J Acoust Soc Am. 2011 Jun;129(6):3934-45. doi: 10.1121/1.3570948.
6
Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
Hear Res. 2017 Jul;350:226-234. doi: 10.1016/j.heares.2017.05.004. Epub 2017 May 11.
9
Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
J Acoust Soc Am. 2013 Mar;133(3):1546-60. doi: 10.1121/1.4789940.
10
Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners.
Trends Amplif. 2013 Mar;17(1):27-44. doi: 10.1177/1084713813477244. Epub 2013 Feb 21.

引用本文的文献

2
Evaluating Selective Apical Electrode Deactivation for Improving Cochlear Implant Outcomes.
Trends Hear. 2025 Jan-Dec;29:23312165251353638. doi: 10.1177/23312165251353638. Epub 2025 Jul 3.
3
Cochlear Implant Electrode Placement and Music Perception.
JAMA Otolaryngol Head Neck Surg. 2025 Mar 1;151(3):220-227. doi: 10.1001/jamaoto.2024.4761.
5
Characterizing the relationship between modulation sensitivity and pitch resolution in cochlear implant users.
Hear Res. 2024 Jul;448:109026. doi: 10.1016/j.heares.2024.109026. Epub 2024 May 16.
6
Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants.
Trends Hear. 2024 Jan-Dec;28:23312165241229880. doi: 10.1177/23312165241229880.
7
10
Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration.
Hear Res. 2022 Feb;414:108404. doi: 10.1016/j.heares.2021.108404. Epub 2021 Nov 27.

本文引用的文献

1
Across-site patterns of modulation detection: relation to speech recognition.
J Acoust Soc Am. 2012 May;131(5):4030-41. doi: 10.1121/1.3701879.
3
Detection of pulse trains in the electrically stimulated cochlea: effects of cochlear health.
J Acoust Soc Am. 2011 Dec;130(6):3954-68. doi: 10.1121/1.3651820.
4
Cochlear infrastructure for electrical hearing.
Hear Res. 2011 Nov;281(1-2):65-73. doi: 10.1016/j.heares.2011.05.002. Epub 2011 May 14.
7
Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.
J Comput Neurosci. 2010 Jun;28(3):405-24. doi: 10.1007/s10827-010-0224-9. Epub 2010 Feb 23.
9
Effects of hearing preservation on psychophysical responses to cochlear implant stimulation.
J Assoc Res Otolaryngol. 2010 Jun;11(2):245-65. doi: 10.1007/s10162-009-0194-7. Epub 2009 Nov 10.
10
Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users.
Hear Res. 2009 Apr;250(1-2):46-54. doi: 10.1016/j.heares.2009.01.009. Epub 2009 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验