Suppr超能文献

识别电极-神经元界面不良的人工耳蜗通道:部分三角波刺激、单通道阈值和心理物理调谐曲线。

Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

机构信息

Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA.

出版信息

Ear Hear. 2010 Apr;31(2):247-58. doi: 10.1097/AUD.0b013e3181c7daf4.

Abstract

OBJECTIVE

The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs.

DESIGN

Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels.

RESULTS

Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, pTP stimulus, had significantly broader PTCs than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with pTP probes for both the highest and lowest threshold channels.

CONCLUSIONS

These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

摘要

目的

本研究旨在评估一种阈限测量方法的能力,该方法采用受限电极配置,以识别空间选择性相对较差的通道。在受限的电极配置中,通道间的阈值变化可能反映了电极与听觉神经元之间界面的变化(即神经存活、电极放置和组织阻抗)。这些电极-神经元界面的变化也应反映在心理物理调谐曲线(PTC)测量中。具体而言,假设使用空间聚焦部分三极(pTP)电极配置获得的高单通道阈值与宽或尖端移位的 PTC 相关。

设计

本研究的数据来自五名植入 HiRes90k 人工耳蜗(Advanced Bionics Corp., Sylmar,CA)的人工耳蜗植入患者。使用 pTP 配置获得了在假定电场大小上变化的刺激的单通道阈值和最舒适的听力水平,其中中心活性电极的一部分(sigma)通过两个相邻电极返回,其余部分通过远处的无关电极返回。对于具有最高、最低和中位数三极(sigma = 1 或 0.9)阈值的通道,获得了正向掩蔽 PTC。探针通道和水平固定,并以单极(sigma = 0)或更聚焦的 pTP(sigma> = 0.55)配置呈现。掩蔽器通道和水平变化,而配置固定为 sigma = 0.5。使用标准的三间隔、二选一强制选择程序测量阈值和掩蔽水平。

结果

随着补偿电流 sigma 的增加和假定电场变得更加集中,单通道阈值和通道间阈值的变异性系统地增加。在所有受试者中,当使用窄的 pTP 刺激测量时,具有最高单通道阈值的通道具有明显较宽的 PTC,而最低阈值的通道则较窄。在两名受试者中,调谐曲线的尖端从探针通道偏移。对于最高和最低阈值的通道,与 pTP 探头相比,单极探头的调谐曲线也更宽。

结论

这些结果表明,使用受限刺激测量的单通道阈值可用于识别空间选择性较差的人工耳蜗植入通道。具有宽或尖端移位的调谐特征的通道可能无法将适当的频谱信息传递给预期的听觉神经元,从而导致感知不佳。作为一种临床工具,快速识别受损通道可以导致针对特定患者的映射策略,并提高言语和音乐感知。

相似文献

3
Comparisons between detection threshold and loudness perception for individual cochlear implant channels.
Ear Hear. 2014 Nov-Dec;35(6):641-51. doi: 10.1097/AUD.0000000000000058.
4
Psychophysical Tuning Curves as a Correlate of Electrode Position in Cochlear Implant Listeners.
J Assoc Res Otolaryngol. 2018 Oct;19(5):571-587. doi: 10.1007/s10162-018-0678-4. Epub 2018 Jun 4.
5
Probing the electrode-neuron interface with focused cochlear implant stimulation.
Trends Amplif. 2010 Jun;14(2):84-95. doi: 10.1177/1084713810375249.
7
Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users.
J Acoust Soc Am. 2011 Jun;129(6):3916-33. doi: 10.1121/1.3583503.
8
Current Focusing to Reduce Channel Interaction for Distant Electrodes in Cochlear Implant Programs.
Trends Hear. 2018 Jan-Dec;22:2331216518813811. doi: 10.1177/2331216518813811.

引用本文的文献

1
A deep learning framework for understanding cochlear implants.
bioRxiv. 2025 Jul 21:2025.07.16.665227. doi: 10.1101/2025.07.16.665227.
2
Investigating the Effect of Blurring and Focusing Current in Cochlear Implant Users with the Panoramic ECAP Method.
J Assoc Res Otolaryngol. 2024 Dec;25(6):591-609. doi: 10.1007/s10162-024-00966-x. Epub 2024 Oct 16.
3
Spectral Grouping of Electrically Encoded Sound Predicts Speech-in-Noise Performance in Cochlear Implantees.
J Assoc Res Otolaryngol. 2023 Dec;24(6):607-617. doi: 10.1007/s10162-023-00918-x. Epub 2023 Dec 7.
5
Cochlear Health and Cochlear-implant Function.
J Assoc Res Otolaryngol. 2023 Feb;24(1):5-29. doi: 10.1007/s10162-022-00882-y. Epub 2023 Jan 4.
6
Current distribution of distributed all-polar cochlear implant stimulation mode measured in-situ.
PLoS One. 2022 Oct 31;17(10):e0275961. doi: 10.1371/journal.pone.0275961. eCollection 2022.
7
Combining Place and Rate of Stimulation Improves Frequency Discrimination in Cochlear Implant Users.
Hear Res. 2022 Oct;424:108583. doi: 10.1016/j.heares.2022.108583. Epub 2022 Jul 22.
8
Tonotopic Selectivity in Cats and Humans: Electrophysiology and Psychophysics.
J Assoc Res Otolaryngol. 2022 Aug;23(4):513-534. doi: 10.1007/s10162-022-00851-5. Epub 2022 Jun 13.
9
Magnetic stimulation allows focal activation of the mouse cochlea.
Elife. 2022 May 24;11:e76682. doi: 10.7554/eLife.76682.
10
Single-Channel Focused Thresholds Relate to Vowel Identification in Pediatric and Adult Cochlear Implant Listeners.
Trends Hear. 2022 Jan-Dec;26:23312165221095364. doi: 10.1177/23312165221095364.

本文引用的文献

1
Role of electrode placement as a contributor to variability in cochlear implant outcomes.
Otol Neurotol. 2008 Oct;29(7):920-8. doi: 10.1097/MAO.0b013e318184f492.
3
Current focusing and steering: modeling, physiology, and psychophysics.
Hear Res. 2008 Aug;242(1-2):141-53. doi: 10.1016/j.heares.2008.03.006. Epub 2008 Apr 6.
4
Forward-masked spatial tuning curves in cochlear implant users.
J Acoust Soc Am. 2008 Mar;123(3):1522-43. doi: 10.1121/1.2836786.
6
Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity.
Hear Res. 2008 Jan;235(1-2):23-38. doi: 10.1016/j.heares.2007.09.013. Epub 2007 Oct 11.
8
Partial withdrawal of deeply inserted cochlear electrodes: observations of two patients.
Eur Arch Otorhinolaryngol. 2007 Nov;264(11):1369-72. doi: 10.1007/s00405-007-0354-5. Epub 2007 Jun 12.
9
Focused intracochlear electric stimulation with phased array channels.
J Acoust Soc Am. 2007 Jun;121(6):3703-16. doi: 10.1121/1.2722047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验