文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过高通量测序鉴定和表征杉木中的小非编码 RNA。

Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing.

机构信息

Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

出版信息

BMC Plant Biol. 2012 Aug 15;12:146. doi: 10.1186/1471-2229-12-146.


DOI:10.1186/1471-2229-12-146
PMID:22894611
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3462689/
Abstract

BACKGROUND: Small non-coding RNAs (sRNAs) play key roles in plant development, growth and responses to biotic and abiotic stresses. At least four classes of sRNAs have been well characterized in plants, including repeat-associated siRNAs (rasiRNAs), microRNAs (miRNAs), trans-acting siRNAs (tasiRNAs) and natural antisense transcript-derived siRNAs. Chinese fir (Cunninghamia lanceolata) is one of the most important coniferous evergreen tree species in China. No sRNA from Chinese fir has been described to date. RESULTS: To obtain sRNAs in Chinese fir, we sequenced a sRNA library generated from seeds, seedlings, leaves, stems and calli, using Illumina high throughput sequencing technology. A comprehensive set of sRNAs were acquired, including conserved and novel miRNAs, rasiRNAs and tasiRNAs. With BLASTN and MIREAP we identified a total of 115 conserved miRNAs comprising 40 miRNA families and one novel miRNA with precursor sequence. The expressions of 16 conserved and one novel miRNAs and one tasiRNA were detected by RT-PCR. Utilizing real time RT-PCR, we revealed that four conserved and one novel miRNAs displayed developmental stage-specific expression patterns in Chinese fir. In addition, 209 unigenes were predicted to be targets of 30 Chinese fir miRNA families, of which five target genes were experimentally verified by 5' RACE, including a squamosa promoter-binding protein gene, a pentatricopeptide (PPR) repeat-containing protein gene, a BolA-like family protein gene, AGO1 and a gene of unknown function. We also demonstrated that the DCL3-dependent rasiRNA biogenesis pathway, which had been considered absent in conifers, existed in Chinese fir. Furthermore, the miR390-TAS3-ARF regulatory pathway was elucidated. CONCLUSIONS: We unveiled a complex population of sRNAs in Chinese fir through high throughput sequencing. This provides an insight into the composition and function of sRNAs in Chinese fir and sheds new light on land plant sRNA evolution.

摘要

背景:小非编码 RNA(sRNA)在植物发育、生长以及对生物和非生物胁迫的响应中起着关键作用。至少有四类 sRNA 在植物中得到了很好的描述,包括重复相关的 siRNA(rasiRNA)、microRNA(miRNA)、反式作用 siRNA(tasiRNA)和天然反义转录物衍生的 siRNA。杉木(Cunninghamia lanceolata)是中国最重要的针叶常绿树种之一。迄今为止,尚未描述过来自杉木的 sRNA。

结果:为了获得杉木中的 sRNA,我们使用 Illumina 高通量测序技术对来自种子、幼苗、叶片、茎和愈伤组织的 sRNA 文库进行了测序。获得了一套全面的 sRNA,包括保守和新的 miRNA、rasiRNA 和 tasiRNA。通过 BLASTN 和 MIREAP,我们总共鉴定出 115 个保守 miRNA,包括 40 个 miRNA 家族和一个具有前体序列的新 miRNA。通过 RT-PCR 检测了 16 个保守 miRNA 和 1 个新 miRNA 和 1 个 tasiRNA 的表达。利用实时 RT-PCR,我们揭示了四个保守 miRNA 和一个新 miRNA 在杉木中具有发育阶段特异性的表达模式。此外,209 个 unigenes 被预测为 30 个杉木 miRNA 家族的靶基因,其中五个靶基因通过 5' RACE 实验验证,包括一个花椰菜花叶病毒 35S 启动子结合蛋白基因、一个五肽重复蛋白基因、一个 BolA 样家族蛋白基因、AGO1 和一个未知功能的基因。我们还证明了 DCL3 依赖的 rasiRNA 生物发生途径,该途径在针叶树中被认为不存在,存在于杉木中。此外,阐明了 miR390-TAS3-ARF 调控途径。

结论:我们通过高通量测序揭示了杉木中复杂的 sRNA 群体。这为杉木中 sRNA 的组成和功能提供了深入的了解,并为陆地植物 sRNA 进化提供了新的线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/a114b5444755/1471-2229-12-146-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/b69893888204/1471-2229-12-146-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/1162ff912449/1471-2229-12-146-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/a01a08196461/1471-2229-12-146-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/223ea3f51cf1/1471-2229-12-146-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/6d1cddc97ec5/1471-2229-12-146-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/a114b5444755/1471-2229-12-146-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/b69893888204/1471-2229-12-146-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/1162ff912449/1471-2229-12-146-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/a01a08196461/1471-2229-12-146-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/223ea3f51cf1/1471-2229-12-146-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/6d1cddc97ec5/1471-2229-12-146-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/3462689/a114b5444755/1471-2229-12-146-6.jpg

相似文献

[1]
Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing.

BMC Plant Biol. 2012-8-15

[2]
Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata.

J Exp Bot. 2015-3-20

[3]
Dynamic expression of small RNA populations in larch (Larix leptolepis).

Planta. 2012-9-16

[4]
Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs.

New Phytol. 2016-3

[5]
High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.).

PLoS One. 2011-11-28

[6]
Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max.

BMC Plant Biol. 2012-10-2

[7]
Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches.

Plant Sci. 2013-1-3

[8]
Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.

BMC Plant Biol. 2016-4-12

[9]
The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling.

New Phytol. 2013-5-2

[10]
Characterization of the small RNA component of leaves and fruits from four different cucurbit species.

BMC Genomics. 2012-7-23

引用本文的文献

[1]
Identification of miRNAs and Their Targets in Under Low Phosphorus Stress Based on Small RNA and Degradome Sequencing.

Int J Mol Sci. 2025-4-12

[2]
Regulatory roles of miRNAs associated with the aging pathway in tree vegetative phase changes.

For Res (Fayettev). 2023-4-18

[3]
Integration of miRNA dynamics and drought tolerant QTLs in rice reveals the role of miR2919 in drought stress response.

BMC Genomics. 2023-9-6

[4]
Comparative Genome-Wide Analysis of MicroRNAs and Their Target Genes in Roots of Contrasting Rice Cultivars under Reproductive-Stage Drought.

Genes (Basel). 2023-7-1

[5]
Application of a novel strong promoter from Chinese fir () in the CRISPR/Cas mediated genome editing of its protoplasts and transgenesis of rice and poplar.

Front Plant Sci. 2023-4-20

[6]
Further Mining and Characterization of miRNA Resource in Chinese Fir ().

Genes (Basel). 2022-11-17

[7]
Identification and Validation of Reliable Reference Genes for Gene Expression Studies in .

Genes (Basel). 2022-4-19

[8]
Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in .

Front Genet. 2022-4-25

[9]
Comprehensive Transcriptome Analysis of Stem-Differentiating Xylem Upon Compression Stress in Cunninghamia Lanceolata.

Front Genet. 2022-3-3

[10]
Non-Coding RNA Analyses of Seasonal Cambium Activity in .

Cells. 2022-2-11

本文引用的文献

[1]
Transcriptome-wide identification and characterization of miRNAs from Pinus densata.

BMC Genomics. 2012-4-6

[2]
The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis.

BMC Genomics. 2012-1-24

[3]
Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.

Plant Physiol. 2012-1-13

[4]
AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation.

PLoS One. 2011-12-13

[5]
Roles of DCL4 and DCL3b in rice phased small RNA biogenesis.

Plant J. 2011-11-23

[6]
The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice.

Plant Cell. 2011-6-24

[7]
miRNA control of vegetative phase change in trees.

PLoS Genet. 2011-2-24

[8]
miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis.

Plant Cell. 2010-12-21

[9]
Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation.

EMBO J. 2010-9-7

[10]
Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2.

Plant Cell. 2010-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索