Department of Biology, University of Ottawa, Ottawa, Ontario, Canada , K1N 6N5.
Proc Biol Sci. 2012 Oct 22;279(1745):4183-91. doi: 10.1098/rspb.2012.1315. Epub 2012 Aug 15.
It is widely held that herbivore growth and production is limited by dietary nitrogen (N) that in turn constrains ecosystem elemental cycling. Yet, emerging evidence suggests that this conception of limitation may be incomplete, because chronic predation risk heightens herbivore metabolic rate and shifts demand from N-rich proteins to soluble carbohydrate-carbon (C). Because soluble C can be limiting, predation risk may cause ecosystem elemental cycling rates and stoichiometric balance to depend on herbivore physiological plasticity. We report on a stoichiometrically explicit ecosystem model that investigates this problem. The model tracks N, and soluble and recalcitrant C through ecosystem compartments. We evaluate how soluble plant C influences C and N stocks and flows in the presence and absence of predation risk. Without risk, herbivores are limited by N and respire excess C so that plant-soluble C has small effects only on elemental stocks and flows. With predation risk, herbivores are limited by soluble C and release excess N, so plant-soluble C critically influences ecosystem elemental stocks flows. Our results emphasize that expressing ecosystem stoichiometric balance using customary C:N ratios that do not distinguish between soluble and recalcitrant C may not adequately describe limitations on elemental cycling.
人们普遍认为,食草动物的生长和生产受到饮食中氮(N)的限制,而氮又反过来限制了生态系统的元素循环。然而,新出现的证据表明,这种限制观念可能并不完整,因为慢性捕食风险会提高食草动物的代谢率,并将需求从富含氮的蛋白质转移到可溶性碳水化合物碳(C)。由于可溶性 C 可能是有限的,捕食风险可能导致生态系统元素循环速率和化学计量平衡取决于食草动物的生理可塑性。我们报告了一个具有明确化学计量的生态系统模型,该模型研究了这个问题。该模型通过生态系统隔室跟踪 N、可溶性和难溶性 C。我们评估了在存在和不存在捕食风险的情况下,可溶性植物 C 如何影响 C 和 N 的储存和流动。在没有风险的情况下,食草动物受到 N 的限制,并通过呼吸释放多余的 C,因此植物可溶性 C 对元素储存和流动的影响很小。有捕食风险时,食草动物受到可溶性 C 的限制,并释放多余的 N,因此植物可溶性 C 对生态系统元素储存和流动具有关键影响。我们的研究结果强调,使用不区分可溶性和难溶性 C 的常用 C:N 比来表达生态系统化学计量平衡可能无法充分描述元素循环的限制。