Ma Qianqian, Fite Kristen, New Christopher Paul, Dabney-Smith Carole
Graduate Program in Cell, Molecular, and Structural Biology Miami University Oxford Ohio.
Present address: Johns Hopkins University School of Medicine Baltimore Maryland.
Plant Direct. 2018 Oct 24;2(10):e00090. doi: 10.1002/pld3.90. eCollection 2018 Oct.
The chloroplast twin arginine transport (cpTat) system distinguishes itself as a protein transport pathway by translocating fully folded proteins, using the proton-motive force (PMF) as the sole source of energy. The cpTat pathway is evolutionarily conserved with the Tat pathway found in the plasma membrane of many prokaryotes. The cpTat () system uses three proteins, Tha4 (TatA), Hcf106 (TatB), and cpTatC (TatC), to form a transient translocase allowing the passage of precursor proteins. Briefly, cpTatC and Hcf106, with Tha4, form the initial receptor complex responsible for precursor protein recognition and binding in an energy-independent manner, while a separate pool of Tha4 assembles with the precursor-bound receptor complex in the presence the PMF. Analysis by blue-native polyacrylamide gel electrophoresis (BN-PAGE) shows that the receptor complex, in the absence of precursor, migrates near 700 kDa and contains cpTatC and Hcf106 with little Tha4 remaining after detergent solubilization. To investigate the role that Hcf106 may play in receptor complex oligomerization and/or stability, systematic cysteine substitutions were made in positions from the N-terminal transmembrane domain to the end of the predicted amphipathic helix of the protein. BN-PAGE analysis allowed us to identify the locations of amino acids in Hcf106 that were critical for interacting with cpTatC. Oxidative cross-linking allowed us to map interactions of the transmembrane domain and amphipathic helix region of Hcf106. In addition, we showed that in vitro expressed, integrated Hcf106 can interact with the precursor signal peptide domain and imported cpTatC, strongly suggesting that a subpopulation of the integrated Hcf106 is participating in competent cpTat complexes.
叶绿体双精氨酸转运(cpTat)系统通过转运完全折叠的蛋白质,以质子动力(PMF)作为唯一能量来源,从而成为一种独特的蛋白质转运途径。cpTat途径在进化上与许多原核生物质膜中发现的Tat途径保守。cpTat()系统利用三种蛋白质,即Tha4(TatA)、Hcf106(TatB)和cpTatC(TatC),形成一个瞬时转位酶,允许前体蛋白通过。简而言之,cpTatC和Hcf106与Tha4一起形成初始受体复合物,以能量非依赖的方式负责前体蛋白的识别和结合,而另一部分Tha4在PMF存在的情况下与结合了前体的受体复合物组装。蓝色非变性聚丙烯酰胺凝胶电泳(BN-PAGE)分析表明,在没有前体的情况下,受体复合物迁移到接近700 kDa,并且包含cpTatC和Hcf106,去污剂溶解后几乎没有剩余的Tha4。为了研究Hcf106在受体复合物寡聚化和/或稳定性中可能发挥的作用,在该蛋白质从N端跨膜结构域到预测的两亲性螺旋末端的位置进行了系统性半胱氨酸取代。BN-PAGE分析使我们能够确定Hcf106中对于与cpTatC相互作用至关重要的氨基酸位置。氧化交联使我们能够绘制Hcf106跨膜结构域和两亲性螺旋区域的相互作用图谱。此外,我们表明体外表达的整合型Hcf106可以与前体信号肽结构域和导入的cpTatC相互作用,强烈表明整合型Hcf106的一个亚群参与了有功能的cpTat复合物。