Suppr超能文献

前额叶和顶叶皮层内的空间关系和空间位置是分离的。

Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex.

机构信息

Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218-2686, USA.

出版信息

J Neurophysiol. 2012 Nov;108(9):2419-29. doi: 10.1152/jn.01024.2011. Epub 2012 Aug 15.

Abstract

Item-specific spatial information is essential for interacting with objects and for binding multiple features of an object together. Spatial relational information is necessary for implicit tasks such as recognizing objects or scenes from different views but also for explicit reasoning about space such as planning a route with a map and for other distinctively human traits such as tool construction. To better understand how the brain supports these two different kinds of information, we used functional MRI to directly contrast the neural encoding and maintenance of spatial relations with that for item locations in equivalent visual scenes. We found a double dissociation between the two: whereas item-specific processing implicates a frontoparietal attention network, including the superior frontal sulcus and intraparietal sulcus, relational processing preferentially recruits a cognitive control network, particularly lateral prefrontal cortex (PFC) and inferior parietal lobule. Moreover, pattern classification revealed that the actual meaning of the relation can be decoded within these same regions, most clearly in rostrolateral PFC, supporting a hierarchical, representational account of prefrontal organization.

摘要

项目特定的空间信息对于与物体交互以及将物体的多个特征绑定在一起至关重要。空间关系信息对于隐式任务(例如从不同视角识别物体或场景)是必要的,也对于显式推理空间(例如使用地图规划路线)以及其他独特的人类特征(例如工具构造)是必要的。为了更好地理解大脑如何支持这两种不同类型的信息,我们使用功能磁共振成像(fMRI)直接对比了空间关系的神经编码和维持与等效视觉场景中项目位置的神经编码和维持。我们发现这两者之间存在双重分离:特定项目的处理涉及额顶注意网络,包括额上沟和顶内沟,而关系处理则优先招募认知控制网络,特别是外侧前额叶皮层(PFC)和下顶叶。此外,模式分类表明,这些相同区域内可以解码关系的实际含义,在额侧 PFC 最为明显,支持前额叶组织的分层、代表性解释。

相似文献

1
Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex.
J Neurophysiol. 2012 Nov;108(9):2419-29. doi: 10.1152/jn.01024.2011. Epub 2012 Aug 15.
2
Maps of space in human frontoparietal cortex.
J Physiol Paris. 2013 Dec;107(6):510-6. doi: 10.1016/j.jphysparis.2013.04.002. Epub 2013 Apr 18.
3
Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex.
Cereb Cortex. 2016 Mar;26(3):1302-1308. doi: 10.1093/cercor/bhv303. Epub 2015 Dec 11.
4
Interference resolution in spatial working memory.
Neuroimage. 2004 Nov;23(3):1013-9. doi: 10.1016/j.neuroimage.2004.07.053.
5
Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus.
Neuroimage. 2010 Nov 1;53(2):718-24. doi: 10.1016/j.neuroimage.2010.06.068. Epub 2010 Jul 6.
6
Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI.
Hum Brain Mapp. 1998;6(1):14-32. doi: 10.1002/(SICI)1097-0193(1998)6:1<14::AID-HBM2>3.0.CO;2-O.
7
Control of spatial and feature-based attention in frontoparietal cortex.
J Neurosci. 2010 Oct 27;30(43):14330-9. doi: 10.1523/JNEUROSCI.4248-09.2010.
9
Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
J Neurosci. 2018 Feb 7;38(6):1511-1519. doi: 10.1523/JNEUROSCI.1716-17.2017. Epub 2018 Jan 8.
10
Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.
J Neurosci. 2017 Jun 21;37(25):6098-6112. doi: 10.1523/JNEUROSCI.3903-16.2017. Epub 2017 May 24.

引用本文的文献

1
High-level visual representations in the human brain are aligned with large language models.
Nat Mach Intell. 2025;7(8):1220-1234. doi: 10.1038/s42256-025-01072-0. Epub 2025 Aug 7.
2
Reward history alters priority map based on spatial relationship, but not absolute location.
Psychon Bull Rev. 2025 Apr 29. doi: 10.3758/s13423-025-02682-w.
3
Interaction Between Memory Load and Experimental Design on Brain Connectivity and Network Topology.
Neurosci Bull. 2023 Apr;39(4):631-644. doi: 10.1007/s12264-022-00982-y. Epub 2022 Dec 24.
4
Mixed metals exposure and cognitive function in Bangladeshi adolescents.
Ecotoxicol Environ Saf. 2022 Mar 1;232:113229. doi: 10.1016/j.ecoenv.2022.113229. Epub 2022 Feb 4.
5
Spatial Organization in Self-Initiated Visual Working Memory.
Front Psychol. 2019 Dec 13;10:2734. doi: 10.3389/fpsyg.2019.02734. eCollection 2019.
6
Keeping Track of Where We Are: Spatial Working Memory in Navigation.
Vis cogn. 2017;25(7-8):691-702. doi: 10.1080/13506285.2017.1322652. Epub 2017 Jun 12.
7
N-back versus Complex Span Working Memory Training.
J Cogn Enhanc. 2017 Dec;1(4):434-454. doi: 10.1007/s41465-017-0044-1. Epub 2017 Oct 16.
8
Increased Hippocampal ProBDNF Contributes to Memory Impairments in Aged Mice.
Front Aging Neurosci. 2017 Aug 31;9:284. doi: 10.3389/fnagi.2017.00284. eCollection 2017.
9
Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory.
Front Hum Neurosci. 2016 Nov 24;10:594. doi: 10.3389/fnhum.2016.00594. eCollection 2016.
10
The role of alpha oscillations in deriving and maintaining spatial relations in working memory.
Cogn Affect Behav Neurosci. 2016 Oct;16(5):888-901. doi: 10.3758/s13415-016-0439-y.

本文引用的文献

1
Homologous mechanisms of visuospatial working memory maintenance in macaque and human: properties and sources.
J Neurosci. 2012 May 30;32(22):7711-22. doi: 10.1523/JNEUROSCI.0215-12.2012.
2
Top-down modulation: bridging selective attention and working memory.
Trends Cogn Sci. 2012 Feb;16(2):129-35. doi: 10.1016/j.tics.2011.11.014. Epub 2011 Dec 28.
4
The enigma of Gerstmann's syndrome revisited: a telling tale of the vicissitudes of neuropsychology.
Brain. 2010 Feb;133(Pt 2):320-32. doi: 10.1093/brain/awp281. Epub 2009 Nov 10.
6
Topographic maps in human frontal and parietal cortex.
Trends Cogn Sci. 2009 Nov;13(11):488-95. doi: 10.1016/j.tics.2009.08.005. Epub 2009 Sep 14.
7
Is the rostro-caudal axis of the frontal lobe hierarchical?
Nat Rev Neurosci. 2009 Sep;10(9):659-69. doi: 10.1038/nrn2667. Epub 2009 Aug 12.
8
Left, but not right, rostrolateral prefrontal cortex meets a stringent test of the relational integration hypothesis.
Neuroimage. 2009 May 15;46(1):338-42. doi: 10.1016/j.neuroimage.2009.01.064. Epub 2009 Feb 11.
9
Evidence for a frontoparietal control system revealed by intrinsic functional connectivity.
J Neurophysiol. 2008 Dec;100(6):3328-42. doi: 10.1152/jn.90355.2008. Epub 2008 Sep 17.
10
Differential neural activation for updating rule versus stimulus information in working memory.
Neuron. 2008 Jul 10;59(1):173-82. doi: 10.1016/j.neuron.2008.05.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验