Jerde Trenton A, Curtis Clayton E
Center for Cognitive Sciences, University of Minnesota, 75 East River Road, Minneapolis, MN 55455-0366, USA.
J Physiol Paris. 2013 Dec;107(6):510-6. doi: 10.1016/j.jphysparis.2013.04.002. Epub 2013 Apr 18.
Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP).
前额叶皮质(PFC)和顶叶后皮质(PPC)是空间认知的神经基础。我们在此回顾了一些研究,在这些研究中我们检验了人类额顶叶皮质可能作为一个优先级地图发挥作用的假设。根据优先级地图理论,视觉世界中的物体或位置由与其注意力优先级成正比的神经活动来表征。我们首先使用功能磁共振成像(fMRI)在前额叶皮质和顶叶后皮质中识别出地形图,将其作为空间的候选优先级地图。然后,我们在隐蔽注意力任务、空间工作记忆任务和运动规划任务的延迟期测量了候选优先级地图中的fMRI活动,以测试该活动是否依赖于特定的空间认知。我们的假设是,前额叶皮质和顶叶后皮质中的一些但并非所有候选优先级地图对于被优先处理的内容是不特定的,因为它们的活动将反映跨任务的空间位置,而不是特定类型的空间认知(例如,隐蔽注意力)。为了测试在空间认知任务期间延迟期活动模式是否可互换,我们使用了多变量分类器。我们发现,在中央前沟上段(sPCS)和顶内沟的一个区域(IPS2)中,训练用于预测一项任务(例如,工作记忆)上位置的解码器能够交叉预测其他任务(例如,隐蔽注意力和运动规划)上的位置,这表明这些维持活动模式可能在不同任务之间是可互换的。这些特性使额叶皮质中的sPCS和顶叶皮质中的IPS2成为可行的优先级地图候选区域,并表明这些区域可能是猴子额叶眼区(FEF)和外侧顶内区(LIP)在人类中的对应区域。