Suppr超能文献

基于kNN-MFA方法的取代苯并恶嗪酮类抗血小板药物的药效团识别与定量构效关系研究

Pharmacophore Identification and QSAR Studies on Substituted Benzoxazinone as Antiplatelet Agents: kNN-MFA Approach.

作者信息

Choudhari Prafulla B, Bhatia Manish S, Jadhav Swapnil D

机构信息

Drug Development Sciences Group, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur Maharashtra, 416013, India.

出版信息

Sci Pharm. 2012 Apr-Jun;80(2):283-94. doi: 10.3797/scipharm.1112-09. Epub 2012 Feb 26.

Abstract

The three-dimensional quantitative structure-activity relationship (3D-QSAR) and pharmacophore identification studies on 28 substituted benzoxazinone derivatives as antiplatelet agents have been carried out. Multiple linear regression (MLR) method was applied for QSAR model development considering training and test set approaches with various feature selection methods. Stepwise (SW), simulated annealing (SA) and genetic algorithm (GA) were applied to derive QSAR models which were further validated for statistical significance and predictive ability by internal and external validation. The results of pharmacophore identification studies showed that hydrogen bond accepters, aromatic and hydrophobic, are the important features for antiplatelet activity. The selected best 3D kNN-MFA model A has a training set of 23 molecules and test set of 5 molecules with validation (q(2)) and cross validation (pred_r(2)) values 0.9739 and 0.8217, respectively. Additionally, the selected best 3D QSAR (MLR) model B has a training set of 23 molecules and test set of 5 molecules with validation (r(2)) and cross validation (pred_r(2)) values of 0.9435 and 0.7663, respectively, and four descriptors at the grid points S_123, E_407, E_311 and H_605. The information rendered by 3D-QSAR models may lead to a better understanding and designing of novel potent antiplatelet molecules.

摘要

已对28种作为抗血小板药物的取代苯并恶嗪酮衍生物进行了三维定量构效关系(3D-QSAR)和药效团识别研究。考虑到训练集和测试集方法以及各种特征选择方法,应用多元线性回归(MLR)方法开发QSAR模型。采用逐步回归(SW)、模拟退火(SA)和遗传算法(GA)推导QSAR模型,并通过内部和外部验证对其统计显著性和预测能力进行进一步验证。药效团识别研究结果表明,氢键受体、芳香性和疏水性是抗血小板活性的重要特征。所选的最佳3D kNN-MFA模型A有一个由23个分子组成的训练集和一个由5个分子组成的测试集,其验证(q(2))和交叉验证(pred_r(2))值分别为0.9739和0.8217。此外,所选的最佳3D QSAR(MLR)模型B有一个由23个分子组成的训练集和一个由5个分子组成的测试集,其验证(r(2))和交叉验证(pred_r(2))值分别为0.9435和0.7663,在网格点S_123、E_407、E_311和H_605处有四个描述符。3D-QSAR模型提供的信息可能有助于更好地理解和设计新型强效抗血小板分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf35/3383213/e53dd59d01ea/scipharm-2012-80-283f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验