Suppr超能文献

基于结构的方法预测未分类的芬太尼类设计分子对μ-阿片受体的结合亲和力。

Structure-Based Approach for the Prediction of Mu-opioid Binding Affinity of Unclassified Designer Fentanyl-Like Molecules.

机构信息

Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.

出版信息

Int J Mol Sci. 2019 May 10;20(9):2311. doi: 10.3390/ijms20092311.

Abstract

Three quantitative structure-activity relationship (QSAR) models for predicting the affinity of mu-opioid receptor (OR) ligands have been developed. The resulted models, exploiting the accessibility of the QSAR modeling, generate a useful tool for the investigation and identification of unclassified fentanyl-like structures. The models have been built using a set of 115 molecules using Forge as a software, and the quality was confirmed by statistical analysis, resulting in being effective for their predictive and descriptive capabilities. The three different approaches were then combined to produce a consensus model and were exploited to explore the chemical landscape of 3000 fentanyl-like structures, generated by a theoretical scaffold-hopping approach. The findings of this study should facilitate the identification and classification of new OR ligands with fentanyl-like structures.

摘要

已开发出三个用于预测μ-阿片受体 (OR) 配体亲和力的定量构效关系 (QSAR) 模型。这些模型利用 QSAR 建模的可及性,为研究和鉴定未分类的芬太尼样结构生成了有用的工具。模型使用 Forge 软件构建了 115 个分子的数据集,并通过统计分析确认了其质量,从而证明了其在预测和描述能力方面的有效性。然后,将这三种不同的方法结合起来生成共识模型,并利用该模型探索了通过理论支架跳跃方法生成的 3000 个芬太尼样结构的化学景观。这项研究的结果应该有助于识别和分类具有芬太尼样结构的新 OR 配体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a42/6539757/872f9d2ed6aa/ijms-20-02311-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验