Suppr超能文献

利用包络分布抽样计算溶液中β-肽右手和左手螺旋之间的自由焓差。

Using enveloping distribution sampling to compute the free enthalpy difference between right- and left-handed helices of a β-peptide in solution.

机构信息

Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland.

出版信息

J Chem Phys. 2012 Aug 14;137(6):064108. doi: 10.1063/1.4742751.

Abstract

Recently, the method of enveloping distribution sampling (EDS) to efficiently obtain free enthalpy differences between different molecular systems from a single simulation has been generalized to compute free enthalpy differences between different conformations of a system [Z. X. Lin, H. Y. Liu, S. Riniker, and W. F. van Gunsteren, J. Chem. Theory Comput. 7, 3884 (2011)]. However, the efficiency of EDS in this case is hampered if the parts of the conformational space relevant to the two end states or conformations are far apart and the conformational diffusion from one state to the other is slow. This leads to slow convergence of the EDS parameter values and free enthalpy differences. In the present work, we apply the EDS methodology to a challenging case, i.e., to calculate the free enthalpy difference between a right-handed 2.7(10∕12)-helix and a left-handed 3(14)-helix of a hexa-β-peptide in solution from a single simulation. No transition between the two helices was detected in a standard EDS parameter update simulation, thus enhanced sampling techniques had to be applied, which included adiabatic decoupling (AD) of solute and solvent motions in combination with increasing the solute temperature, and lowering the shear viscosity of the solvent. AD was found to be unsuitable to enhance the sampling of the solute conformations in the EDS parameter update simulations. Lowering the solvent shear viscosity turned out to be useful during EDS parameter update simulations, i.e., it did speed up the conformational diffusion of the solute, more transitions between the two helices were observed. This came at the cost of more CPU time spent due to the shorter time step needed for simulations with the lower solvent shear viscosity. Using an improved EDS parameter update scheme, parameter convergence was five-fold enhanced. The resulting free enthalpy difference between the two helices calculated from EDS agrees well with the result obtained through direct counting from a long MD simulation, while the EDS technique significantly enhances the sampling of both helices over non-helical conformations.

摘要

最近,一种有效的包裹分布抽样(EDS)方法已经被推广到从单个模拟中计算不同分子系统之间的自由焓差,以获得系统不同构象之间的自由焓差[Z. X. Lin、H. Y. Liu、S. Riniker 和 W. F. van Gunsteren,J. Chem. Theory Comput. 7, 3884 (2011)]。然而,如果构象空间中与两个终态或构象相关的部分相距较远,并且构象从一个状态到另一个状态的扩散较慢,那么 EDS 在这种情况下的效率就会受到阻碍。这导致 EDS 参数值和自由焓差的收敛速度较慢。在本工作中,我们将 EDS 方法应用于一个具有挑战性的情况,即从单个模拟中计算溶液中六-β-肽的右手 2.7(10∕12)-螺旋和左手 3(14)-螺旋之间的自由焓差。在标准的 EDS 参数更新模拟中没有检测到两种螺旋之间的转变,因此必须应用增强采样技术,包括溶质和溶剂运动的绝热解耦(AD)与增加溶质温度和降低溶剂剪切粘度相结合。发现 AD 不适合增强 EDS 参数更新模拟中溶质构象的采样。降低溶剂剪切粘度在 EDS 参数更新模拟中是有用的,即它确实加快了溶质的构象扩散,观察到更多的两种螺旋之间的转变。这是以由于需要更低的溶剂剪切粘度的模拟而增加的 CPU 时间为代价的。使用改进的 EDS 参数更新方案,参数收敛速度提高了五倍。从 EDS 计算得到的两种螺旋之间的自由焓差与从长 MD 模拟直接计数得到的结果吻合良好,而 EDS 技术显著提高了两种螺旋的采样,而不是无规卷曲构象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验