Suppr超能文献

氧化还原控制心脏兴奋性。

Redox control of cardiac excitability.

机构信息

Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA.

出版信息

Antioxid Redox Signal. 2013 Feb 1;18(4):432-68. doi: 10.1089/ars.2011.4234. Epub 2012 Aug 16.

Abstract

Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation.

摘要

活性氧(ROS)与各种人类疾病有关,人们相当关注其生理作用的研究。如果细胞抗氧化防御机制失效,各种 ROS 在 线粒体中合成并在细胞质中积累。这种 ROS 合成和抗氧化防御系统的关键平衡被称为细胞的氧化还原系统。各种心血管疾病也受到氧化还原的不同程度的影响。ROS 通过不同的细胞途径,对心肌细胞功能、电生理学和药理学既有有害作用,也有保护作用。ROS 的功能主要取决于合成的 ROS 的类型和数量。虽然文献清楚地表明 ROS 对心脏收缩力的影响,但它们对心脏兴奋性的影响相对较小。心脏兴奋性取决于携带各种去极化或复极化电流的各种心肌肌浆网或线粒体离子通道的功能,这些电流也维持细胞离子平衡。ROS 以不同程度改变这些离子通道的功能,通过影响细胞静息电位和心脏动作电位的形态来决定兴奋性。因此,氧化还原平衡调节心脏兴奋性,在病理调节下,可能改变动作电位传播引起心律失常。了解氧化还原如何影响细胞兴奋性可能为各种心律失常的预防或治疗提供新的思路。本综述将重点关注氧化还原与心脏兴奋的研究。

相似文献

1
Redox control of cardiac excitability.
Antioxid Redox Signal. 2013 Feb 1;18(4):432-68. doi: 10.1089/ars.2011.4234. Epub 2012 Aug 16.
2
Redox regulation of sodium and calcium handling.
Antioxid Redox Signal. 2013 Mar 20;18(9):1063-77. doi: 10.1089/ars.2012.4818. Epub 2012 Oct 3.
3
Mitochondria and arrhythmias.
Free Radic Biol Med. 2014 Jun;71:351-361. doi: 10.1016/j.freeradbiomed.2014.03.033. Epub 2014 Apr 5.
4
Mitochondria-derived ROS bursts disturb Ca²⁺ cycling and induce abnormal automaticity in guinea pig cardiomyocytes: a theoretical study.
Am J Physiol Heart Circ Physiol. 2015 Mar 15;308(6):H623-36. doi: 10.1152/ajpheart.00493.2014. Epub 2014 Dec 24.
5
Mitochondrial reactive oxygen species production and elimination.
J Mol Cell Cardiol. 2014 Aug;73:26-33. doi: 10.1016/j.yjmcc.2014.03.011. Epub 2014 Mar 20.
8
Methylene Blue Counteracts HS-Induced Cardiac Ion Channel Dysfunction and ATP Reduction.
Cardiovasc Toxicol. 2018 Oct;18(5):407-419. doi: 10.1007/s12012-018-9451-5.
9
Mechanistic Investigation of the Arrhythmogenic Role of Oxidized CaMKII in the Heart.
Biophys J. 2015 Aug 18;109(4):838-49. doi: 10.1016/j.bpj.2015.06.064.
10
Metabolic stress, reactive oxygen species, and arrhythmia.
J Mol Cell Cardiol. 2012 Feb;52(2):454-63. doi: 10.1016/j.yjmcc.2011.09.018. Epub 2011 Sep 25.

引用本文的文献

1
Modulation of Redox-Sensitive Cardiac Ion Channels.
Antioxidants (Basel). 2025 Jul 8;14(7):836. doi: 10.3390/antiox14070836.
2
Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization.
Small Sci. 2024 Jul 22;4(9):2400079. doi: 10.1002/smsc.202400079. eCollection 2024 Sep.
3
[Quercetin ameliorates myocardial injury in diabetic rats by regulating L-type calcium channels].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Mar 20;45(3):531-541. doi: 10.12122/j.issn.1673-4254.2025.03.11.
4
Biological Aging and Venous Thromboembolism: A Review of Telomeres and Beyond.
Biomedicines. 2024 Dec 25;13(1):15. doi: 10.3390/biomedicines13010015.
5
Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review.
Antioxidants (Basel). 2024 Sep 26;13(10):1172. doi: 10.3390/antiox13101172.
6
Redox Regulation of K Channel: Role of Thioredoxin.
Antioxid Redox Signal. 2024 Nov;41(13-15):818-844. doi: 10.1089/ars.2023.0416. Epub 2024 Aug 28.
7
Mitochondrial Dysfunction in Cardiac Arrhythmias.
Cells. 2023 Feb 21;12(5):679. doi: 10.3390/cells12050679.
8
Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology.
Methods Mol Biol. 2022;2399:277-341. doi: 10.1007/978-1-0716-1831-8_13.
9
Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits.
Oxid Med Cell Longev. 2021 Mar 13;2021:8876792. doi: 10.1155/2021/8876792. eCollection 2021.
10
Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets.
Front Cardiovasc Med. 2021 Feb 15;8:646932. doi: 10.3389/fcvm.2021.646932. eCollection 2021.

本文引用的文献

1
Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors.
J Physiol. 2011 Oct 1;589(Pt 19):4697-708. doi: 10.1113/jphysiol.2011.210005. Epub 2011 Aug 1.
2
Post-transcriptional silencing of SCN1B and SCN2B genes modulates late sodium current in cardiac myocytes from normal dogs and dogs with chronic heart failure.
Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1596-605. doi: 10.1152/ajpheart.00948.2009. Epub 2011 Jun 24.
3
Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice.
Am J Physiol Cell Physiol. 2011 Sep;301(3):C577-86. doi: 10.1152/ajpcell.00125.2011. Epub 2011 Jun 15.
7
KCNE4 juxtamembrane region is required for interaction with calmodulin and for functional suppression of KCNQ1.
J Biol Chem. 2011 Feb 11;286(6):4141-9. doi: 10.1074/jbc.M110.158865. Epub 2010 Nov 30.
8
Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
Circulation. 2010 Nov 30;122(22):2273-80. doi: 10.1161/CIRCULATIONAHA.110.968057. Epub 2010 Nov 15.
9
10
Pharmacology of cardiac potassium channels.
Adv Pharmacol. 2010;59:93-134. doi: 10.1016/S1054-3589(10)59004-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验