Suppr超能文献

甲硫氨酸亚砜还原酶 A 缺乏导致物理和氧化应激下心肌细胞的细胞功能障碍和线粒体损伤。

Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses.

机构信息

College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.

出版信息

Biochem Biophys Res Commun. 2010 Nov 26;402(4):608-13. doi: 10.1016/j.bbrc.2010.10.064. Epub 2010 Oct 28.

Abstract

Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA(-/-)) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA(-/-) mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2Hz), is significantly reduced in MsrA(-/-) cardiac myocytes. MsrA(-/-) cardiac myocytes also show a significant decrease in contractility after oxidative stress using H(2)O(2). Corresponding changes in Ca(2+) transients are observed in MsrA(-/-) cardiomyocytes treated with 2Hz stimulation or with H(2)O(2). Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA(-/-) mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA(-/-) mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

摘要

甲硫氨酸亚砜还原酶 A(MsrA)是一种能使蛋白质中的甲硫氨酸还原的酶。我们利用 MsrA 基因敲除(MsrA(-/-))小鼠模型,研究了 MsrA 在心脏中的作用。我们的数据表明,如果心脏不受压力,MsrA(-/-) 小鼠的细胞收缩性和心功能没有明显改变。然而,当使用更高的刺激频率(2Hz)给心脏施加强迫时,MsrA(-/-) 心肌细胞的细胞收缩性显著降低。在使用 H(2)O(2) 造成氧化应激后,MsrA(-/-) 心肌细胞的收缩性也显著下降。在接受 2Hz 刺激或 H(2)O(2)处理的 MsrA(-/-) 心肌细胞中,Ca(2+)瞬变也出现相应的变化。电子显微镜分析显示 MsrA(-/-) 小鼠心脏中的线粒体形态发生了巨大变化。进一步的生化测量表明,MsrA(-/-) 小鼠心脏中的蛋白质氧化水平明显高于野生型对照。我们的研究表明,心肌细胞中缺乏 MsrA 会降低心肌细胞对应激刺激的适应能力,导致心脏细胞功能障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验