Suppr超能文献

氧化型钙调蛋白依赖性蛋白激酶II在心脏中致心律失常作用的机制研究

Mechanistic Investigation of the Arrhythmogenic Role of Oxidized CaMKII in the Heart.

作者信息

Foteinou Panagiota T, Greenstein Joseph L, Winslow Raimond L

机构信息

Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.

Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.

出版信息

Biophys J. 2015 Aug 18;109(4):838-49. doi: 10.1016/j.bpj.2015.06.064.

Abstract

Oxidative stress and calcium (Ca(2+))/calmodulin (CaM)-dependent protein kinase II (CaMKII) both play important roles in the pathogenesis of cardiac disease. Although the pathophysiological relevance of reactive oxygen species (ROS) and CaMKII has been appreciated for some time, recent work has shown that ROS can directly oxidize CaMKII, leading to its persistent activity and an increase of the likelihood of cellular arrhythmias such as early afterdepolarizations (EADs). Because CaMKII modulates the function of many proteins involved in excitation-contraction coupling, elucidation of its role in cardiac function, in both healthy and oxidative stress conditions, is challenging. To investigate this role, we have developed a model of CaMKII activation that includes both the phosphorylation-dependent and the newly identified oxidation-dependent activation pathways. This model is incorporated into our previous local-control model of the cardiac myocyte that describes excitation-contraction coupling via stochastic simulation of individual Ca(2+) release units and CaMKII-mediated phosphorylation of L-type Ca(2+) channels (LCCs), ryanodine receptors and sodium (Na(+)) channels. The model predicts the experimentally measured slow-rate dependence of H2O2-induced EADs. Upon increased H2O2, simulations suggest that selective activation of late Na(+) current (INaL), although it prolongs action potential duration, is not by itself sufficient to produce EADs. Similar results are obtained if CaMKII effects on LCCs and ryanodine receptors are considered separately. However, EADs emerge upon simultaneous activation of both LCCs and Na(+) channels. Further modeling results implicate activation of the Na(+)-Ca(2+) exchanger (NCX) as an important player in the generation of EADs. During bradycardia, the emergence of H2O2-induced EADs was correlated with a shift in the timing of NCX current reversal toward the plateau phase earlier in the action potential. Using the timing of NCX current reversal as an indicator event for EADs, the model identified counterintuitive ionic changes-difficult to experimentally dissect-that have the greatest influence on ROS-related arrhythmia propensity.

摘要

氧化应激和钙(Ca(2+))/钙调蛋白(CaM)依赖性蛋白激酶II(CaMKII)在心脏疾病的发病机制中均起重要作用。尽管活性氧(ROS)和CaMKII的病理生理相关性已被认识一段时间,但最近的研究表明,ROS可直接氧化CaMKII,导致其持续活性增加以及细胞心律失常(如早期后去极化,EADs)发生的可能性增加。由于CaMKII调节许多参与兴奋 - 收缩偶联的蛋白质的功能,因此阐明其在健康和氧化应激条件下对心脏功能的作用具有挑战性。为了研究这一作用,我们开发了一种CaMKII激活模型,该模型包括磷酸化依赖性和新发现的氧化依赖性激活途径。该模型被纳入我们先前的心肌细胞局部控制模型中,该模型通过对单个Ca(2+)释放单元的随机模拟以及CaMKII介导的L型Ca(2+)通道(LCCs)、兰尼碱受体和钠(Na(+))通道的磷酸化来描述兴奋 - 收缩偶联。该模型预测了实验测量的H2O2诱导的EADs的慢速率依赖性。在H2O2增加时,模拟表明晚期Na(+)电流(INaL)的选择性激活虽然延长了动作电位持续时间,但本身不足以产生EADs。如果分别考虑CaMKII对LCCs和兰尼碱受体的影响,也会得到类似的结果。然而,当LCCs和Na(+)通道同时激活时,EADs就会出现。进一步的建模结果表明,钠 - 钙交换体(NCX)的激活是EADs产生的重要因素。在心动过缓期间,H2O2诱导的EADs的出现与NCX电流反转时间向动作电位早期平台期的偏移相关。使用NCX电流反转时间作为EADs的指示事件,该模型确定了对ROS相关心律失常倾向影响最大的违反直觉的离子变化——这些变化难以通过实验进行剖析。

相似文献

1
Mechanistic Investigation of the Arrhythmogenic Role of Oxidized CaMKII in the Heart.
Biophys J. 2015 Aug 18;109(4):838-49. doi: 10.1016/j.bpj.2015.06.064.
2
CaMKII-dependent activation of late INa contributes to cellular arrhythmia in a model of the cardiac myocyte.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4665-8. doi: 10.1109/IEMBS.2011.6091155.
5
Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model.
Circulation. 2004 Nov 16;110(20):3168-74. doi: 10.1161/01.CIR.0000147231.69595.D3. Epub 2004 Oct 25.
6
Ca/calmodulin-dependent kinase II-dependent regulation of atrial myocyte late Na current, Ca cycling, and excitability: a mathematical modeling study.
Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1227-H1239. doi: 10.1152/ajpheart.00185.2017. Epub 2017 Aug 25.
7
Contribution of the neuronal sodium channel Na1.8 to sodium- and calcium-dependent cellular proarrhythmia.
J Mol Cell Cardiol. 2020 Jul;144:35-46. doi: 10.1016/j.yjmcc.2020.05.002. Epub 2020 May 11.
9
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias.
Circ Arrhythm Electrophysiol. 2011 Dec;4(6):947-57. doi: 10.1161/CIRCEP.111.964908. Epub 2011 Oct 18.
10
NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII.
J Mol Cell Cardiol. 2014 Oct;75:206-15. doi: 10.1016/j.yjmcc.2014.07.011. Epub 2014 Jul 27.

引用本文的文献

1
Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges.
Biomolecules. 2022 Nov 14;12(11):1686. doi: 10.3390/biom12111686.
3
Calcium dysregulation increases right ventricular outflow tract arrhythmogenesis in rabbit model of chronic kidney disease.
J Cell Mol Med. 2021 Dec;25(24):11264-11277. doi: 10.1111/jcmm.17052. Epub 2021 Nov 10.
4
Mitochondrial Contributions in the Genesis of Delayed Afterdepolarizations in Ventricular Myocytes.
Front Physiol. 2021 Oct 14;12:744023. doi: 10.3389/fphys.2021.744023. eCollection 2021.
5
Cardiomyocyte Na and Ca mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors.
Basic Res Cardiol. 2021 Oct 14;116(1):58. doi: 10.1007/s00395-021-00900-9.
6
Mitochondrial depolarization promotes calcium alternans: Mechanistic insights from a ventricular myocyte model.
PLoS Comput Biol. 2021 Jan 25;17(1):e1008624. doi: 10.1371/journal.pcbi.1008624. eCollection 2021 Jan.
7
The Role of CaMKII Overexpression and Oxidation in Atrial Fibrillation-A Simulation Study.
Front Physiol. 2020 Dec 18;11:607809. doi: 10.3389/fphys.2020.607809. eCollection 2020.
8
Mitochondrial Dysfunction as Substrate for Arrhythmogenic Cardiomyopathy: A Search for New Disease Mechanisms.
Front Physiol. 2019 Dec 10;10:1496. doi: 10.3389/fphys.2019.01496. eCollection 2019.
9
A Spatiotemporal Ventricular Myocyte Model Incorporating Mitochondrial Calcium Cycling.
Biophys J. 2019 Dec 17;117(12):2349-2360. doi: 10.1016/j.bpj.2019.09.005. Epub 2019 Sep 12.

本文引用的文献

1
Perspective: a dynamics-based classification of ventricular arrhythmias.
J Mol Cell Cardiol. 2015 May;82:136-52. doi: 10.1016/j.yjmcc.2015.02.017. Epub 2015 Mar 11.
2
Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences.
Front Pharmacol. 2014 Jun 17;5:144. doi: 10.3389/fphar.2014.00144. eCollection 2014.
3
CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors.
Front Pharmacol. 2014 May 8;5:101. doi: 10.3389/fphar.2014.00101. eCollection 2014.
4
A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII.
J Physiol. 2014 Mar 15;592(6):1181-97. doi: 10.1113/jphysiol.2013.266676. Epub 2014 Jan 13.
5
Redox signaling in cardiac physiology and pathology.
Circ Res. 2012 Sep 28;111(8):1091-106. doi: 10.1161/CIRCRESAHA.111.255216.
6
Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias.
Circ Res. 2012 Jun 8;110(12):1661-77. doi: 10.1161/CIRCRESAHA.111.243956.
7
Theoretical study of L-type Ca(2+) current inactivation kinetics during action potential repolarization and early afterdepolarizations.
J Physiol. 2012 Sep 15;590(18):4465-81. doi: 10.1113/jphysiol.2012.231886. Epub 2012 May 14.
8
9
Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents?
Am J Physiol Heart Circ Physiol. 2012 Apr 15;302(8):H1636-44. doi: 10.1152/ajpheart.00742.2011. Epub 2012 Feb 3.
10
CaMKII-dependent activation of late INa contributes to cellular arrhythmia in a model of the cardiac myocyte.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4665-8. doi: 10.1109/IEMBS.2011.6091155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验