Jungreuthmayer Christian, Zanghellini Jürgen
Austrian Centre of Industrial Biotechnology, Vienna, Austria.
BMC Syst Biol. 2012 Aug 16;6:103. doi: 10.1186/1752-0509-6-103.
Elementary mode (EM) analysis is ideally suited for metabolic engineering as it allows for an unbiased decomposition of metabolic networks in biologically meaningful pathways. Recently, constrained minimal cut sets (cMCS) have been introduced to derive optimal design strategies for strain improvement by using the full potential of EM analysis. However, this approach does not allow for the inclusion of regulatory information.
Here we present an alternative, novel and simple method for the prediction of cMCS, which allows to account for boolean transcriptional regulation. We use binary linear programming and show that the design of a regulated, optimal metabolic network of minimal functionality can be formulated as a standard optimization problem, where EM and regulation show up as constraints. We validated our tool by optimizing ethanol production in E. coli. Our study showed that up to 70% of the predicted cMCS contained non-enzymatic, non-annotated reactions, which are difficult to engineer. These cMCS are automatically excluded by our approach utilizing simple weight functions. Finally, due to efficient preprocessing, the binary program remains computationally feasible.
We used integer programming to predict efficient deletion strategies to metabolically engineer a production organism. Our formulation utilizes the full potential of cMCS but adds additional flexibility to the design process. In particular our method allows to integrate regulatory information into the metabolic design process and explicitly favors experimentally feasible deletions. Our method remains manageable even if millions or potentially billions of EM enter the analysis. We demonstrated that our approach is able to correctly predict the most efficient designs for ethanol production in E. coli.
基本模式(EM)分析非常适合代谢工程,因为它能将代谢网络无偏差地分解为具有生物学意义的途径。最近,受约束的最小割集(cMCS)已被引入,通过充分利用EM分析的潜力来推导菌株改良的最佳设计策略。然而,这种方法不允许纳入调控信息。
在此,我们提出了一种预测cMCS的替代、新颖且简单的方法,该方法允许考虑布尔型转录调控。我们使用二元线性规划,并表明具有最小功能的受调控最佳代谢网络的设计可以被表述为一个标准优化问题,其中EM和调控表现为约束条件。我们通过优化大肠杆菌中的乙醇生产对我们的工具进行了验证。我们的研究表明,高达70%的预测cMCS包含难以进行工程改造的非酶促、未注释反应。我们的方法利用简单的权重函数自动排除了这些cMCS。最后,由于高效的预处理,二元程序在计算上仍然可行。
我们使用整数规划来预测高效的删除策略,以对生产生物体进行代谢工程改造。我们的公式化表述充分利用了cMCS的潜力,但为设计过程增加了额外的灵活性。特别是,我们的方法允许将调控信息整合到代谢设计过程中,并明确支持实验上可行的删除操作。即使有 millions或可能数十亿的EM进入分析,我们的方法仍然易于管理。我们证明了我们的方法能够正确预测大肠杆菌中乙醇生产的最有效设计。