Nair Govind, Jungreuthmayer Christian, Hanscho Michael, Zanghellini Jürgen
Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria ; Austrian Centre of Industrial Biotechnology, Vienna, Austria.
Algorithms Mol Biol. 2015 Dec 21;10:29. doi: 10.1186/s13015-015-0060-6. eCollection 2015.
The rational, in silico prediction of gene-knockouts to turn organisms into efficient cell factories is an essential and computationally challenging task in metabolic engineering. Elementary flux mode analysis in combination with constraint minimal cut sets is a particularly powerful method to identify optimal engineering targets, which will force an organism into the desired metabolic state. Given an engineering objective, it is theoretically possible, although computationally impractical, to find the best minimal intervention strategies.
We developed a genetic algorithm (GA-MCS) to quickly find many (near) optimal intervention strategies while overcoming the above mentioned computational burden. We tested our algorithm on Escherichia coli metabolic networks of three different sizes to find intervention strategies satisfying three different engineering objectives.
We show that GA-MCS finds all practically relevant targets for any (non)-linear engineering objective. Our algorithm also found solutions comparable to previously published results. We show that for large networks optimal solutions are found within a fraction of the time used for a complete enumeration.
通过计算机对基因敲除进行合理预测,从而将生物体转变为高效细胞工厂,这是代谢工程中一项至关重要且在计算上具有挑战性的任务。基本通量模式分析与约束最小割集相结合是一种特别强大的方法,用于识别最佳工程靶点,这将促使生物体进入所需的代谢状态。给定一个工程目标,从理论上讲,虽然在计算上不切实际,但找到最佳的最小干预策略是可能的。
我们开发了一种遗传算法(GA - MCS),以快速找到许多(接近)最优干预策略,同时克服上述计算负担。我们在三种不同规模的大肠杆菌代谢网络上测试了我们的算法,以找到满足三种不同工程目标的干预策略。
我们表明,GA - MCS能找到针对任何(非)线性工程目标的所有实际相关靶点。我们的算法还找到了与先前发表结果相当的解决方案。我们表明,对于大型网络,能在完整枚举所需时间的一小部分内找到最优解。