Suppr超能文献

图像引导手术中的组织跟踪和配准。

Tissue tracking and registration for image-guided surgery.

出版信息

IEEE Trans Med Imaging. 2012 Nov;31(11):2169-82. doi: 10.1109/TMI.2012.2212718. Epub 2012 Aug 9.

Abstract

Vision-based tracking of tissue is a key component to enable augmented reality during a surgical operation. Conven- tional tracking techniques in computer vision rely on identifying strong edge features or distinctive textures in a well-lit environ- ment; however endoscopic tissue images do not have strong edge features, are poorly lit and exhibit a high degree of specular reflection. Therefore, prior work in achieving densely populated 3D features for describing tissue surface profiles require complex image processing techniques and have been limited in providing stable, long-term tracking or real-time processing. In this paper, we present an integrated framework for ac- curately tracking tissue in surgical stereo-cameras at real-time speeds. We use a combination of the STAR feature detector and Binary Robust Independent Elementary Features to acquire salient features that can be persistently tracked at high frame rates. The features are then used to acquire a densely-populated map of the deformations of tissue surface in 3D. We evaluate the method against popular feature algorithms in in-vivo animal study video sequences, and we also apply the proposed method to human partial nephrectomy video sequences. We extend the salient feature framework to support region tracking in order to maintain the spatial correspondence of a tracked region of tissue or a medical image registration to the surrounding tissue. In-vitro tissue studies show registration accuracies of 1.3-3.3 mm using a rigid-body transformation method.

摘要

基于视觉的组织跟踪是实现手术过程中增强现实的关键组成部分。计算机视觉中的传统跟踪技术依赖于在光线充足的环境中识别强边缘特征或独特纹理;然而,内窥镜组织图像没有强边缘特征,光照较差,表现出高度镜面反射。因此,在实现用于描述组织表面轮廓的密集 3D 特征方面,先前的工作需要复杂的图像处理技术,并且在提供稳定、长期跟踪或实时处理方面受到限制。在本文中,我们提出了一个用于在实时速度下准确跟踪手术立体摄像机中组织的集成框架。我们使用 STAR 特征检测器和二进制稳健独立基本特征的组合来获取可以在高帧率下持续跟踪的显着特征。然后,这些特征用于获取组织表面变形的密集 3D 地图。我们针对体内动物研究视频序列中的流行特征算法评估该方法,我们还将提出的方法应用于人类部分肾切除术视频序列。我们扩展了显着特征框架以支持区域跟踪,以便将跟踪的组织区域或医学图像注册与周围组织的空间对应关系保持一致。体外组织研究表明,使用刚体变换方法的注册精度为 1.3-3.3 毫米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验