Suppr超能文献

用于跟踪变形组织的上下文特定描述符。

Context specific descriptors for tracking deforming tissue.

机构信息

The Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.

出版信息

Med Image Anal. 2012 Apr;16(3):550-61. doi: 10.1016/j.media.2011.02.010. Epub 2011 May 14.

Abstract

In minimally invasive surgery, deployment of motion compensation, dynamic active constraints and adaptive intra-operative guidance require accurate estimation of deforming tissue in 3D. To this end, the use of vision-based techniques is advantageous in that it does not require the integration of additional hardware to the existing surgical settings. Deformation can be recovered by tracking features on the surface of the tissue. Existing methods are mostly based on ad hoc machine vision techniques that have generally been developed for rigid scenes or use pre-determined models with parameters fine tuned to specific surgical settings. In this work, we propose a novel tracking technique based on a context specific feature descriptor. The descriptor can adapt to its surroundings and identify the most discriminate information for tracking. The feature descriptor is represented as a decision tree and the tracking process is formulated as a classification problem for which log likelihood ratios are used to improve classifier training. A recursive tracking algorithm obtains examples of tissue deformation used to train the classifier. Additional training data is generated by geometric and appearance modelling. Experimental results have shown that the proposed context specific descriptor is robust to drift, occlusion, and changes in orientation and scale. The performance of the algorithm is compared with existing tracking algorithms and validated with both simulated and in vivo datasets.

摘要

在微创手术中,运动补偿、动态主动约束和自适应术中引导的部署需要准确估计 3D 中的变形组织。为此,基于视觉的技术具有优势,因为它不需要将额外的硬件集成到现有的手术环境中。可以通过跟踪组织表面上的特征来恢复变形。现有的方法大多基于特定于机器的视觉技术,这些技术通常是为刚性场景开发的,或者使用预先确定的模型,这些模型的参数经过微调以适应特定的手术环境。在这项工作中,我们提出了一种基于上下文特定特征描述符的新型跟踪技术。该描述符可以适应其周围环境,并识别出最具辨别力的跟踪信息。特征描述符表示为决策树,跟踪过程被表示为分类问题,其中对数似然比用于改进分类器训练。递归跟踪算法获得用于训练分类器的组织变形示例。通过几何和外观建模生成额外的训练数据。实验结果表明,所提出的上下文特定描述符对漂移、遮挡以及方向和比例的变化具有鲁棒性。将该算法的性能与现有的跟踪算法进行了比较,并使用模拟和体内数据集进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验