Accademia Lucchese di Scienze, Lettere e Arti, Classe di Scienze, Palazzo Ducale, I-Lucca 55100, Italy.
Chem Biodivers. 2012 Aug;9(8):1425-35. doi: 10.1002/cbdv.201200176.
In this work, by applying a non-deterministic, randomly-oriented minimal force to the dissociated CO ligand of the MauG-CO system, the molecular-dynamics (MD) behavior of this system could be quickly unraveled. It turned out that CO has no marked directional egress from the high-spin c-heme iron distal pocket. Rather, CO is able to exploit all interstices created during the protein fluctuations. Nonetheless, no steady route toward the surrounding solvent was ever observed: CO jumped first into other binding pockets before being able to escape the protein. In a few cases, on hitting the surrounding H(2)O molecules, CO was observed to reverse direction, re-entering the protein. A contention that conformational inversion of the P107 ring provides a gate to the iron ion is not supported by the present simulations.
在这项工作中,通过对 MauG-CO 体系中游离的 CO 配体施加非确定的、随机定向的最小力,该体系的分子动力学(MD)行为可以被快速揭示。结果表明,CO 并没有明显的方向从高自旋 c-血红素铁的远端口袋中排出。相反,CO 能够利用蛋白质波动过程中产生的所有间隙。然而,在周围溶剂中并没有观察到稳定的通道:CO 首先跳跃到其他结合口袋,然后才能逃离蛋白质。在少数情况下,当 CO 撞击周围的 H2O 分子时,观察到 CO 改变方向,重新进入蛋白质。目前的模拟结果并不支持 P107 环的构象反转提供通向铁离子的通道的说法。