Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States.
Biochemistry. 2013 Dec 31;52(52):9447-55. doi: 10.1021/bi401441h. Epub 2013 Dec 16.
The di-heme enzyme MauG catalyzes the oxidative biosynthesis of a tryptophan tryptophylquinone cofactor on a precursor of the enzyme methylamine dehydrogenase (preMADH). Reaction of H2O2 with the diferric form of MauG, or reaction of O2 with diferrous MauG, forms the catalytic intermediate known as bis-Fe(IV), which acts as the key oxidant during turnover. The site of substrate oxidation is more than 40 Å from the high-spin heme iron where H2O2 initially reacts, and catalysis relies on radical hopping through an interfacial residue, Trp199 of MauG. In the absence of preMADH, the bis-Fe(IV) intermediate is remarkably stable, but repeated exposure to H2O2 results in suicide inactivation. Using mass spectrometry, we show that this process involves the oxidation of three Met residues (108, 114, and 116) near the high-spin heme through ancillary electron transfer pathways engaged in the absence of substrate. The mutation of a conserved Pro107 in the distal pocket of the high-spin heme results in a dramatic increase in the level of oxidation of these Met residues. These results illustrate structural mechanisms by which MauG controls reaction with its high-valent heme cofactor and limits uncontrolled oxidation of protein residues and loss of catalytic activity. The conservation of Met residues near the high-spin heme among MauG homologues from different organisms suggests that eventual deactivation of MauG may function in a biological context. That is, methionine oxidation may represent a protective mechanism that prevents the generation of reactive oxygen species by MauG in the absence of preMADH.
双血红素酶 MauG 催化色氨酸色氨酰醌辅因子在酶甲胺脱氢酶(preMADH)前体上的氧化生物合成。H2O2 与 MauG 的双铁形式反应,或 O2 与二价 MauG 反应,形成称为双 Fe(IV)的催化中间物,它在周转过程中充当关键氧化剂。底物氧化的位点距离高自旋血红素铁超过 40 Å,其中 H2O2 最初反应,并且催化依赖于通过界面残基色氨酸 199 的自由基跳跃。在没有 preMADH 的情况下,双 Fe(IV)中间物非常稳定,但反复暴露于 H2O2 会导致自杀失活。使用质谱法,我们表明这个过程涉及通过在没有底物的情况下参与的辅助电子转移途径氧化靠近高自旋血红素的三个 Met 残基(108、114 和 116)。高自旋血红素远端口袋中保守的 Pro107 突变导致这些 Met 残基氧化水平显著增加。这些结果说明了 MauG 控制与其高价血红素辅因子反应并限制蛋白质残基不受控制氧化和丧失催化活性的结构机制。来自不同生物体的 MauG 同源物中靠近高自旋血红素的 Met 残基的保守性表明,MauG 的最终失活可能在生物学背景下发挥作用。也就是说,甲硫氨酸氧化可能代表一种保护机制,可防止 MauG 在没有 preMADH 的情况下产生活性氧物种。