Suppr超能文献

具有常数潜伏期和传染期的传染病模型的全局稳定性。

Global stability for epidemic model with constant latency and infectious periods.

机构信息

School of Mathematics and Physics, China University of Geosciences, Wuhan, China.

出版信息

Math Biosci Eng. 2012 Apr;9(2):297-312. doi: 10.3934/mbe.2012.9.297.

Abstract

In recent years many delay epidemiological models have been proposed to study at which stage of the epidemics the delays can destabilize the disease free equilibrium, or the endemic equilibrium, giving rise to stability switches. One of these models is the SEIR model with constant latency time and infectious periods [2], for which the authors have proved that the two delays are harmless in inducing stability switches. However, it is left open the problem of the global asymptotic stability of the endemic equilibrium whenever it exists. Even the Lyapunov functions approach, recently proposed by Huang and Takeuchi to study many delay epidemiological models, fails to work on this model. In this paper, an age-infection model is presented for the delay SEIR epidemic model, such that the properties of global asymptotic stability of the equilibria of the age-infection model imply the same properties for the original delay-differential epidemic model. By introducing suitable Lyapunov functions to study the global stability of the disease free equilibrium (when R0 ≤ 1) and of the endemic equilibria (whenever R0 > 1) of the age-infection model, we can infer the corresponding global properties for the equilibria of the delay SEIR model in [2], thus proving that the endemic equilibrium in [2] is globally asymptotically stable whenever it exists.

摘要

近年来,已经提出了许多延迟流行病学模型来研究在疾病爆发的哪个阶段,延迟可以使无病平衡点或地方病平衡点失稳,从而引发稳定性转换。其中一个模型是具有恒定潜伏期和传染性期的 SEIR 模型[2],作者已经证明这两个延迟在诱导稳定性转换方面是无害的。然而,对于存在的地方病平衡点的全局渐近稳定性问题仍然没有解决。即使是 Huang 和 Takeuchi 最近提出的用于研究许多延迟流行病学模型的 Lyapunov 函数方法,也不适用于这个模型。在本文中,为延迟 SEIR 传染病模型提出了一个年龄感染模型,使得年龄感染模型平衡点的全局渐近稳定性的性质暗示了原始延迟微分传染病模型的相同性质。通过引入合适的 Lyapunov 函数来研究无病平衡点(当 R0 ≤ 1 时)和年龄感染模型的地方病平衡点(当 R0 > 1 时)的全局稳定性,我们可以推断出[2]中延迟 SEIR 模型平衡点的相应全局性质,从而证明[2]中地方病平衡点在存在时是全局渐近稳定的。

相似文献

1
Global stability for epidemic model with constant latency and infectious periods.
Math Biosci Eng. 2012 Apr;9(2):297-312. doi: 10.3934/mbe.2012.9.297.
2
Global stability of an epidemic model with delay and general nonlinear incidence.
Math Biosci Eng. 2010 Oct;7(4):837-50. doi: 10.3934/mbe.2010.7.837.
3
An SEIR epidemic model with constant latency time and infectious period.
Math Biosci Eng. 2011 Oct 1;8(4):931-52. doi: 10.3934/mbe.2011.8.931.
4
Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.
Bull Math Biol. 2010 Jul;72(5):1192-207. doi: 10.1007/s11538-009-9487-6. Epub 2010 Jan 21.
5
Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
Bull Math Biol. 2009 Jan;71(1):75-83. doi: 10.1007/s11538-008-9352-z. Epub 2008 Sep 4.
6
Global properties of a delayed SIR epidemic model with multiple parallel infectious stages.
Math Biosci Eng. 2012 Jul;9(3):685-95. doi: 10.3934/mbe.2012.9.685.
7
Analysis of SIR epidemic models with nonlinear incidence rate and treatment.
Math Biosci. 2012 Jul;238(1):12-20. doi: 10.1016/j.mbs.2012.03.010. Epub 2012 Apr 9.
8
Impact of heterogeneity on the dynamics of an SEIR epidemic model.
Math Biosci Eng. 2012 Apr;9(2):393-411. doi: 10.3934/mbe.2012.9.393.
9
Stability and bifurcations in an epidemic model with varying immunity period.
Bull Math Biol. 2010 Feb;72(2):490-505. doi: 10.1007/s11538-009-9458-y. Epub 2009 Nov 7.
10
Global stability properties of a class of renewal epidemic models.
J Math Biol. 2019 May;78(6):1713-1725. doi: 10.1007/s00285-018-01324-1. Epub 2019 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验