Suppr超能文献

一类更新型传染病模型的全局稳定性性质

Global stability properties of a class of renewal epidemic models.

作者信息

Meehan Michael T, Cocks Daniel G, Müller Johannes, McBryde Emma S

机构信息

Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.

Research School of Science and Engineering, Australian National University, Canberra, Australia.

出版信息

J Math Biol. 2019 May;78(6):1713-1725. doi: 10.1007/s00285-018-01324-1. Epub 2019 Feb 9.

Abstract

We investigate the global dynamics of a general Kermack-McKendrick-type epidemic model formulated in terms of a system of renewal equations. Specifically, we consider a renewal model for which both the force of infection and the infected removal rates are arbitrary functions of the infection age, [Formula: see text], and use the direct Lyapunov method to establish the global asymptotic stability of the equilibrium solutions. In particular, we show that the basic reproduction number, [Formula: see text], represents a sharp threshold parameter such that for [Formula: see text], the infection-free equilibrium is globally asymptotically stable; whereas the endemic equilibrium becomes globally asymptotically stable when [Formula: see text], i.e. when it exists.

摘要

我们研究了一个用更新方程系统表述的一般Kermack-McKendrick型流行病模型的全局动力学。具体而言,我们考虑一个更新模型,其中感染率和感染移除率都是感染年龄(\tau)的任意函数,并且使用直接李雅普诺夫方法建立平衡解的全局渐近稳定性。特别地,我们表明基本再生数(R_0)代表一个尖锐的阈值参数,使得当(R_0 < 1)时,无感染平衡是全局渐近稳定的;而当(R_0 > 1)时,即当地方病平衡存在时,它变得全局渐近稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验