Suppr超能文献

果蝇的最佳长寿需要限制 PQBP1 的水平。

A restricted level of PQBP1 is needed for the best longevity of Drosophila.

机构信息

Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.

出版信息

Neurobiol Aging. 2013 Jan;34(1):356.e11-20. doi: 10.1016/j.neurobiolaging.2012.07.015. Epub 2012 Aug 15.

Abstract

A number of neurological diseases are caused by mutations of RNA metabolism-related genes. A complicating issue is that whether under- or overfunction of such genes is responsible for the phenotype. Polyglutamine tract binding protein-1, a causative gene for X-linked mental retardation, is also involved in RNA metabolism, and both mutation and duplication of the gene were reported in human patients. In this study, we first report a novel phenotype of dPQBP1 (drosophila homolog of Polyglutamine tract binding protein-1)-mutant flies, lifespan shortening. We next address the gene dose-phenotype relationship in lifespan shortening and in learning disability, a previously described phenotype. The 2 phenotypes are rescued by dPQBP1 but in different dose-phenotype relationships. Either insufficient or excessive expression of dPQBP1 does not recover lifespan, while excessive expression recovers learning ability. We finally address the mechanism of lifespan shortening. Tissue-specific expression of dPQBP1-RNA interference construct reveals both neural and nonneural dPQBP1 contribute to the lifespan, while the latter has a dominant effect. Gene expression profiling suggested retinophilin/MORN repeat containing 4, a gene promoting axonal degeneration, to contribute to lifespan shortening by neural dPQBP1. Systems biology analysis of the gene expression profiles revealed indirect influence of dPQBP1 on insulin-like growth factor 1, insulin receptor, and peroxisome proliferator-activated receptorα/γ signaling pathways in nonneural tissues. Collectively, given that dPQBP1 affects multiple pathways in different dose-dependent and tissue-specific manners, dPQBP1 at a restricted expression level is needed for the best longevity.

摘要

许多神经疾病是由 RNA 代谢相关基因的突变引起的。一个复杂的问题是,这些基因的功能不足或过强是否是表型的原因。聚谷氨酰胺结合蛋白 1(X 连锁智力低下的致病基因)也参与 RNA 代谢,并且在人类患者中报道了该基因的突变和重复。在这项研究中,我们首次报道了 dPQBP1(果蝇同源物聚谷氨酰胺结合蛋白 1)突变果蝇的一种新表型,即寿命缩短。接下来,我们解决了寿命缩短和学习障碍(以前描述过的表型)中基因剂量表型关系的问题。这两种表型都可以通过 dPQBP1 来挽救,但在不同的剂量表型关系中。dPQBP1 的表达不足或过度都不能恢复寿命,而过度表达则可以恢复学习能力。最后,我们解决了寿命缩短的机制问题。组织特异性表达 dPQBP1-RNA 干扰构建体表明,神经和非神经组织中的 dPQBP1 都有助于寿命,而后者具有显性效应。基因表达谱分析表明,促进轴突退化的基因视网膜蛋白/MORN 重复包含 4,通过神经 dPQBP1 有助于寿命缩短。基因表达谱的系统生物学分析表明,dPQBP1 对非神经组织中胰岛素样生长因子 1、胰岛素受体和过氧化物酶体增殖物激活受体α/γ信号通路的影响是间接的。总之,鉴于 dPQBP1 以不同的剂量依赖性和组织特异性方式影响多个途径,dPQBP1 在受限的表达水平上是最佳长寿所必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验