Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
Neurobiol Aging. 2013 Jan;34(1):356.e11-20. doi: 10.1016/j.neurobiolaging.2012.07.015. Epub 2012 Aug 15.
A number of neurological diseases are caused by mutations of RNA metabolism-related genes. A complicating issue is that whether under- or overfunction of such genes is responsible for the phenotype. Polyglutamine tract binding protein-1, a causative gene for X-linked mental retardation, is also involved in RNA metabolism, and both mutation and duplication of the gene were reported in human patients. In this study, we first report a novel phenotype of dPQBP1 (drosophila homolog of Polyglutamine tract binding protein-1)-mutant flies, lifespan shortening. We next address the gene dose-phenotype relationship in lifespan shortening and in learning disability, a previously described phenotype. The 2 phenotypes are rescued by dPQBP1 but in different dose-phenotype relationships. Either insufficient or excessive expression of dPQBP1 does not recover lifespan, while excessive expression recovers learning ability. We finally address the mechanism of lifespan shortening. Tissue-specific expression of dPQBP1-RNA interference construct reveals both neural and nonneural dPQBP1 contribute to the lifespan, while the latter has a dominant effect. Gene expression profiling suggested retinophilin/MORN repeat containing 4, a gene promoting axonal degeneration, to contribute to lifespan shortening by neural dPQBP1. Systems biology analysis of the gene expression profiles revealed indirect influence of dPQBP1 on insulin-like growth factor 1, insulin receptor, and peroxisome proliferator-activated receptorα/γ signaling pathways in nonneural tissues. Collectively, given that dPQBP1 affects multiple pathways in different dose-dependent and tissue-specific manners, dPQBP1 at a restricted expression level is needed for the best longevity.
许多神经疾病是由 RNA 代谢相关基因的突变引起的。一个复杂的问题是,这些基因的功能不足或过强是否是表型的原因。聚谷氨酰胺结合蛋白 1(X 连锁智力低下的致病基因)也参与 RNA 代谢,并且在人类患者中报道了该基因的突变和重复。在这项研究中,我们首次报道了 dPQBP1(果蝇同源物聚谷氨酰胺结合蛋白 1)突变果蝇的一种新表型,即寿命缩短。接下来,我们解决了寿命缩短和学习障碍(以前描述过的表型)中基因剂量表型关系的问题。这两种表型都可以通过 dPQBP1 来挽救,但在不同的剂量表型关系中。dPQBP1 的表达不足或过度都不能恢复寿命,而过度表达则可以恢复学习能力。最后,我们解决了寿命缩短的机制问题。组织特异性表达 dPQBP1-RNA 干扰构建体表明,神经和非神经组织中的 dPQBP1 都有助于寿命,而后者具有显性效应。基因表达谱分析表明,促进轴突退化的基因视网膜蛋白/MORN 重复包含 4,通过神经 dPQBP1 有助于寿命缩短。基因表达谱的系统生物学分析表明,dPQBP1 对非神经组织中胰岛素样生长因子 1、胰岛素受体和过氧化物酶体增殖物激活受体α/γ信号通路的影响是间接的。总之,鉴于 dPQBP1 以不同的剂量依赖性和组织特异性方式影响多个途径,dPQBP1 在受限的表达水平上是最佳长寿所必需的。