Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA.
Int J Biochem Cell Biol. 2013 Jan;45(1):34-40. doi: 10.1016/j.biocel.2012.08.009. Epub 2012 Aug 10.
Diseases of the mitochondria generally affect cells with high-energy demand, and appear to most profoundly affect excitatory cells that have localized high energy requirements, such as neurons and cardiac and skeletal muscle cells. Complex I of the mammalian mitochondrial respiratory chain is a very large, 45 subunit enzyme, and functional deficiency of complex I is the most frequently observed cause of oxidative phosphorylation (OXPHOS) disorders. Impairment of complex I results in decreased cellular energy production and is responsible for a variety of human encephalopathies, myopathies and cardiomyopathies. Complex I deficiency may be caused by mutations in any of the seven mitochondrial or 38 nuclear genes that encode complex I subunits or by mutations in various other nuclear genes that affect complex I assembly or function. Mouse models that faithfully mimic human complex I disorders are needed to better understand the role of complex I in health and disease and for evaluation of potential therapies for mitochondrial diseases. In this review we discuss existing mouse models of mitochondrial complex I dysfunction, focusing on those with similarities to human mitochondrial disorders. We also discuss some of the noteworthy murine genetic models in which complex I genes are not disrupted, but complex I dysfunction is observed, along with some of the more popular chemical compounds that inhibit complex I function and are useful for modeling complex I deficiency in mice. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
线粒体疾病通常影响高能量需求的细胞,并且似乎对具有局部高能量需求的兴奋细胞(如神经元以及心脏和骨骼肌细胞)影响最大。哺乳动物线粒体呼吸链复合物 I 是一种非常大的、由 45 个亚基组成的酶,复合物 I 的功能缺陷是氧化磷酸化(OXPHOS)障碍最常观察到的原因。复合物 I 的损伤导致细胞能量产生减少,导致各种人类脑病、肌肉病和心肌病。复合物 I 缺陷可能是由编码复合物 I 亚基的七个线粒体或 38 个核基因中的任何一个突变引起的,也可能是由影响复合物 I 组装或功能的各种其他核基因中的突变引起的。需要具有良好模拟人类复合物 I 疾病的小鼠模型,以更好地理解复合物 I 在健康和疾病中的作用,并评估潜在的线粒体疾病治疗方法。在这篇综述中,我们讨论了现有的线粒体复合物 I 功能障碍的小鼠模型,重点讨论了与人类线粒体疾病相似的模型。我们还讨论了一些值得注意的小鼠遗传模型,其中复合物 I 基因没有被破坏,但观察到复合物 I 功能障碍,以及一些抑制复合物 I 功能的常用化学化合物,这些化合物可用于在小鼠中模拟复合物 I 缺陷。本文是题为“生物能障碍、适应和治疗”的专刊的一部分。