Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
Nucleic Acids Res. 2012 Oct;40(19):9543-56. doi: 10.1093/nar/gks766. Epub 2012 Aug 16.
Streptomycetes sense and respond to the stress of phosphate starvation via the two-component PhoR-PhoP signal transduction system. To identify the in vivo targets of PhoP we have undertaken a chromatin-immunoprecipitation-on-microarray analysis of wild-type and phoP mutant cultures and, in parallel, have quantified their transcriptomes. Most (ca. 80%) of the previously in vitro characterized PhoP targets were identified in this study among several hundred other putative novel PhoP targets. In addition to activating genes for phosphate scavenging systems PhoP was shown to target two gene clusters for cell wall/extracellular polymer biosynthesis. Furthermore PhoP was found to repress an unprecedented range of pathways upon entering phosphate limitation including nitrogen assimilation, oxidative phosphorylation, nucleotide biosynthesis and glycogen catabolism. Moreover, PhoP was shown to target many key genes involved in antibiotic production and morphological differentiation, including afsS, atrA, bldA, bldC, bldD, bldK, bldM, cdaR, cdgA, cdgB and scbR-scbA. Intriguingly, in the PhoP-dependent cpk polyketide gene cluster, PhoP accumulates substantially at three specific sites within the giant polyketide synthase-encoding genes. This study suggests that, following phosphate limitation, Streptomyces coelicolor PhoP functions as a 'master' regulator, suppressing central metabolism, secondary metabolism and developmental pathways until sufficient phosphate is salvaged to support further growth and, ultimately, morphological development.
链霉菌通过 PhoR-PhoP 双组分信号转导系统感知和响应磷酸盐饥饿胁迫。为了鉴定 PhoP 的体内靶标,我们对野生型和 phoP 突变体培养物进行了染色质免疫沉淀微阵列分析,并同时对它们的转录组进行了定量分析。在这项研究中,我们鉴定了先前在体外鉴定的大约 80%的 PhoP 靶标,以及数百个其他假定的新 PhoP 靶标。除了激活磷酸盐摄取系统的基因外,PhoP 还被证明靶向两个细胞壁/细胞外聚合物生物合成的基因簇。此外,PhoP 被发现进入磷酸盐限制后会抑制包括氮同化、氧化磷酸化、核苷酸生物合成和糖原分解代谢在内的前所未有的一系列途径。此外,PhoP 被证明靶向许多参与抗生素产生和形态分化的关键基因,包括 afsS、atrA、bldA、bldC、bldD、bldK、bldM、cdaR、cdgA、cdgB 和 scbR-scbA。有趣的是,在 PhoP 依赖的 cpk 聚酮基因簇中,PhoP 在编码巨型聚酮合酶的基因内的三个特定位点大量积累。这项研究表明,在磷酸盐限制后,天蓝色链霉菌 PhoP 作为“主”调节剂发挥作用,抑制中心代谢、次级代谢和发育途径,直到回收足够的磷酸盐来支持进一步的生长,并最终支持形态发育。