Alfa Institute of Biomedical Sciences, Marousi, Athens, Greece.
PLoS One. 2012;7(8):e40310. doi: 10.1371/journal.pone.0040310. Epub 2012 Aug 8.
The traditional Serfling-type approach for influenza-like illness surveillance requires long historical time-series. We retrospectively evaluated the use of recent, short, historical time-series for recognizing the onset of community outbreaks of respiratory tract infections (RTIs).
The data used referred to the proportion of diagnoses for upper or lower RTIs to total diagnoses for house-call visits, performed by a private network of medical specialists (SOS Doctors) in the metropolitan area of Athens, Greece, between January 01, 2000 and October 12, 2008. The reference standard classification of the observations was obtained by generating epidemic thresholds after analyzing the full 9-year period. We evaluated two different alert generating methods [simple regression and cumulative sum (CUSUM), respectively], under a range of input parameters, using data for the previous running 4-6 week period. These methods were applied if the previous weeks contained non-aberrant observations.
We found that the CUSUM model with a specific set of parameters performed marginally better than simple regression for both groups. The best results (sensitivity, specificity) for simple regression and CUSUM models for upper RTIs were (1.00, 0.82) and (0.94, 0.93) respectively. Corresponding results for lower RTIs were (1.00, 0.80) and (0.93, 0.91) respectively.
Short-term data for house-call visits can be used rather reliably to identify respiratory tract outbreaks in the community using simple regression and CUSUM methods. Such surveillance models could be particularly useful when a large historical database is either unavailable or inaccurate and, thus, traditional methods are not optimal.
流感样疾病监测的传统 Serfling 方法需要长期的历史时间序列。我们回顾性评估了使用近期、短期的历史时间序列来识别社区呼吸道感染(RTI)爆发的方法。
所使用的数据是指希腊雅典大都市区私人医疗专家网络(SOS 医生)进行的上门就诊中,上或下呼吸道感染诊断占总诊断的比例,数据时间范围为 2000 年 1 月 1 日至 2008 年 10 月 12 日。通过分析整个 9 年期间的资料生成流行阈值,获得观察结果的参考标准分类。我们在一系列输入参数下,分别使用前 4-6 周的运行数据,评估了两种不同的警报生成方法[简单回归和累积和(CUSUM)]。如果前几周的观察结果无异常,则应用这些方法。
我们发现,对于上呼吸道感染和下呼吸道感染,特定参数设定的 CUSUM 模型的性能均略优于简单回归模型。简单回归和 CUSUM 模型对上呼吸道感染的最佳结果(敏感性、特异性)分别为(1.00、0.82)和(0.94、0.93)。对于下呼吸道感染的相应结果分别为(1.00、0.80)和(0.93、0.91)。
使用简单回归和 CUSUM 方法,通过上门就诊的短期数据可以相当可靠地识别社区中的呼吸道爆发。当不存在或历史数据库不准确时,这种监测模型可能特别有用,此时传统方法并不理想。