McKeague I W, López-Pintado S, Hallin M, Siman M
1Department of Biostatistics, Columbia University, New York, NY, USA.
2ECARES, Université libre de Bruxelles, Bruxelles, Belgium.
J Dev Orig Health Dis. 2011 Dec;2(6):322-9. doi: 10.1017/S2040174411000572.
Growth trajectories play a central role in life course epidemiology, often providing fundamental indicators of prenatal or childhood development, as well as an array of potential determinants of adult health outcomes. Statistical methods for the analysis of growth trajectories have been widely studied, but many challenging problems remain. Repeated measurements of length, weight and head circumference, for example, may be available on most subjects in a study, but usually only sparse temporal sampling of such variables is feasible. It can thus be challenging to gain a detailed understanding of growth patterns, and smoothing techniques are inevitably needed. Moreover, the problem is exacerbated by the presence of large fluctuations in growth velocity during early infancy, and high variability between subjects. Existing approaches, however, can be inflexible because of a reliance on parametric models, require computationally intensive methods that are unsuitable for exploratory analyses, or are only capable of examining each variable separately. This article proposes some new nonparametric approaches to analyzing sparse data on growth trajectories, with flexibility and ease of implementation being key features. The methods are illustrated using data on participants in the Collaborative Perinatal Project.
生长轨迹在生命历程流行病学中起着核心作用,通常提供产前或儿童发育的基本指标,以及一系列成人健康结果的潜在决定因素。用于分析生长轨迹的统计方法已得到广泛研究,但仍存在许多具有挑战性的问题。例如,一项研究中的大多数受试者可能都有长度、体重和头围的重复测量数据,但通常对这些变量只能进行稀疏的时间采样。因此,要详细了解生长模式具有挑战性,不可避免地需要平滑技术。此外,由于婴儿早期生长速度存在大幅波动以及个体间差异较大,问题变得更加严重。然而,现有方法可能不够灵活,因为依赖参数模型,需要计算密集型方法,不适合探索性分析,或者只能分别检查每个变量。本文提出了一些新的非参数方法来分析生长轨迹的稀疏数据,灵活性和易于实施是其关键特征。使用围产期协作项目参与者的数据对这些方法进行了说明。