Barry D
Department of Statistics, University College Cork, Ireland.
Biometrics. 1995 Jun;51(2):639-55.
An experiment involves K subjects where for subject i, ni, values yi1, yi2, ..., y(ini) of a random variable Y are observed at times ti1 ti2, ..., t(ini). Assume that yij = F(tij) +eij where eij are independently and identically distributed (i.i.d.) N(0, sigma2). We consider the estimation of the function F and the testing of the homogeneity hypothesis that, for [formula, see text] does not depend on t. The function F(i,t) is modelled as a Gaussian process which seeks to quantify the notions that for each i, F(i, t) is a slowly changing function of t and that for i is not equal to j, F(i, t), and F(j, T) are in some sense similar. We propose to estimate F (i, t) by its posterior mean given all of the data. This Bayes estimate is shown to be equivalent to a particular form of penalised likelihood estimation. We consider data-based methods for setting the parameters of the Gaussian process prior, develop a test of the homogeneity hypothesis, report the results of a Monte Carlo study illustrating the effectiveness of the proposed methodology, and apply the methods to a study of variations in temperature and blood pressure over the course of the menstrual cycle.
一项实验涉及(K)个受试者,对于受试者(i),在时间(t_{i1},t_{i2},\cdots,t_{i(n_i)})观察到随机变量(Y)的(n_i)个值(y_{i1},y_{i2},\cdots,y_{i(n_i)})。假设(y_{ij}=F(t_{ij}) + e_{ij}),其中(e_{ij})相互独立且同分布(i.i.d.),服从(N(0,\sigma^2))。我们考虑对函数(F)的估计以及对同质性假设的检验,即对于[公式,见原文],其不依赖于(t)。函数(F(i,t))被建模为一个高斯过程,旨在量化这样的概念:对于每个(i),(F(i,t))是(t)的缓慢变化函数,并且对于(i\neq j),(F(i,t))和(F(j,t))在某种意义上是相似的。我们建议根据所有数据通过其后验均值来估计(F(i,t))。这个贝叶斯估计被证明等同于一种特殊形式的惩罚似然估计。我们考虑基于数据的方法来设置高斯过程先验的参数,开发一种对同质性假设的检验,报告一个蒙特卡罗研究的结果以说明所提出方法的有效性,并将这些方法应用于一项关于月经周期中体温和血压变化的研究。