Physik Department, Technische Universität München, 85748 Garching, Germany.
Langmuir. 2012 Nov 20;28(46):16049-59. doi: 10.1021/la3020089. Epub 2012 Sep 10.
We calculate the electro-osmotic mobility and surface conductivity at a solid-liquid interface from a modified Poisson-Boltzmann equation, including spatial variations of the dielectric function and the viscosity that where extracted previously from molecular dynamics simulations of aqueous interfaces. The low-dielectric region directly at the interface leads to a substantially reduced surface capacitance. At the same time, ions accumulate into a highly condensed interfacial layer, leading to the well-known saturation of the electro-osmotic mobility at large surface charge density regardless of the hydrodynamic boundary conditions. The experimentally well-established apparent excess surface conductivity follows from our model for all hydrodynamic boundary conditions without additional assumptions. Our theory fits multiple published sets of experimental data on hydrophilic and hydrophobic surfaces with striking accuracy, using the nonelectrostatic ion-surface interaction as the only fitting parameter.
我们从修正后的泊松-玻尔兹曼方程计算了固-液界面的电渗流迁移率和表面电导率,其中包括介电函数和粘度的空间变化,这些变化是从先前对水相界面的分子动力学模拟中提取的。界面处的低介电区域导致表面电容显著降低。同时,离子在界面上聚集形成高度浓缩的界面层,导致电渗流迁移率在很大的表面电荷密度下达到饱和,而与流体动力学边界条件无关。我们的模型无需额外假设,适用于所有流体动力学边界条件,得出了实验上公认的表观过剩表面电导率。我们的理论使用非静电离子-表面相互作用作为唯一的拟合参数,对亲水和疏水表面的多组实验数据进行拟合,结果非常准确。