Suppr超能文献

高电荷表面上界面、电黏滞及非线性介电效应在动电现象中的作用

Interfacial, Electroviscous, and Nonlinear Dielectric Effects on Electrokinetics at Highly Charged Surfaces.

作者信息

Rezaei Majid, Mitterwallner Bernhard G, Loche Philip, Uematsu Yuki, Netz Roland R, Bonthuis Douwe Jan

机构信息

Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.

Department of Physics, Kyushu University, 819-0395 Fukuoka, Japan.

出版信息

J Phys Chem B. 2021 May 13;125(18):4767-4778. doi: 10.1021/acs.jpcb.0c11280. Epub 2021 May 3.

Abstract

The dielectric constant and the viscosity of water at the interface of hydrophilic surfaces differ from their bulk values, and it has been proposed that the deviation is caused by the strong electric field and the high ion concentration in the interfacial layer. We calculate the dependence of the dielectric constant and the viscosity of bulk electrolytes on the electric field and the salt concentration. Incorporating the concentration and field-dependent dielectric constant and viscosity in the extended Poisson-Boltzmann and Stokes equations, we calculate the electro-osmotic mobility. We compare the results to literature experimental data and explicit molecular dynamics simulations of OH-terminated surfaces and show that it is necessary to additionally include the presence of a subnanometer wide interfacial water layer, the properties of which are drastically transformed by the sheer presence of the interface. We conclude that the origin of the anomalous behavior of aqueous interfacial layers cannot be found in electrostriction or electroviscous effects caused by the interfacial electric field and ion concentration. Instead, it is primarily caused by the intrinsic ordering and orientation of the interfacial water layer.

摘要

在亲水性表面界面处,水的介电常数和粘度与其本体值不同,有人提出这种偏差是由界面层中的强电场和高离子浓度引起的。我们计算了本体电解质的介电常数和粘度对电场和盐浓度的依赖性。将浓度和场依赖的介电常数及粘度纳入扩展的泊松 - 玻尔兹曼方程和斯托克斯方程中,我们计算了电渗迁移率。我们将结果与文献实验数据以及OH端接表面的显式分子动力学模拟进行比较,结果表明有必要额外考虑存在一个亚纳米宽的界面水层,其性质会因界面的存在而发生急剧变化。我们得出结论,水界面层异常行为的起源并非在于界面电场和离子浓度引起的电致伸缩或电粘性效应。相反,它主要是由界面水层的固有有序性和取向性引起的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec2c/8154604/a646145e5a61/jp0c11280_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验