Suppr超能文献

将 D-氨基酸或简单糖苷引入小肽中,使超分子水凝胶能够抵抗蛋白水解。

Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis.

机构信息

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.

出版信息

Langmuir. 2012 Sep 18;28(37):13512-7. doi: 10.1021/la302583a. Epub 2012 Sep 4.

Abstract

Here we report the examination of two convenient strategies, the use of a d-amino acid residue or a glycoside segment, for increasing the proteolytic resistance of supramolecular hydrogelators based on small peptides. Our results show that the introduction of d-amino acid or glycoside to the peptides significantly increases the resistance of the hydrogelators against proteinase K, a powerful endopeptidase. The insertion of d-amino acid in the peptide backbone, however, results relatively low storage moduli of the hydrogels, likely due to the disruption of the superstructures of the molecular assembly. In contrast, the introduction of a glycoside to the C-terminal of peptide enhances the biostability of the hydrogelators without the significant decrease of the storage moduli of the hydrogels. This work suggests that the inclusion of a simple glycogen in hydrogelators is a useful approach to increase their biostability, and the gained understanding from the work may ultimately lead to development of hydrogels of functional peptides for biomedical applications that require long-term biostability.

摘要

在这里,我们报告了两种方便的策略的研究,即使用 d-氨基酸残基或糖苷片段来提高基于小肽的超分子水凝胶的抗蛋白酶水解能力。我们的结果表明,在肽中引入 d-氨基酸或糖苷可以显著提高水凝胶对蛋白酶 K(一种强大的内肽酶)的抗性。然而,在肽骨架中插入 d-氨基酸会导致水凝胶的储能模量相对较低,这可能是由于分子组装的超结构被破坏。相比之下,在肽的 C 末端引入糖苷可以增强水凝胶的生物稳定性,而不会显著降低水凝胶的储能模量。这项工作表明,在水凝胶中加入简单的糖原是提高其生物稳定性的一种有效方法,从这项工作中获得的认识最终可能会导致开发用于需要长期生物稳定性的生物医学应用的功能性肽水凝胶。

相似文献

2
Multifunctional, biocompatible supramolecular hydrogelators consist only of nucleobase, amino acid, and glycoside.
J Am Chem Soc. 2011 Nov 2;133(43):17513-8. doi: 10.1021/ja208456k. Epub 2011 Oct 7.
3
D-amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides.
Biomacromolecules. 2014 Oct 13;15(10):3559-68. doi: 10.1021/bm5010355. Epub 2014 Sep 17.
4
Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
Chem Rev. 2015 Dec 23;115(24):13165-307. doi: 10.1021/acs.chemrev.5b00299. Epub 2015 Dec 8.
6
Supramolecular hydrogels made of basic biological building blocks.
Chem Asian J. 2014 Jun;9(6):1446-72. doi: 10.1002/asia.201301693. Epub 2014 Mar 12.
9
Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
Acc Chem Res. 2017 Apr 18;50(4):740-750. doi: 10.1021/acs.accounts.7b00070. Epub 2017 Mar 2.
10
Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability.
Biomacromolecules. 2016 Feb 8;17(2):437-45. doi: 10.1021/acs.biomac.5b01319. Epub 2016 Jan 25.

引用本文的文献

2
Probing the Effects of Chirality on Self-Assembling Peptides: Hydrogel Formation, Degradation, Antigen Release, and Adjuvancy.
Cell Mol Bioeng. 2024 Jul 8;17(5):441-451. doi: 10.1007/s12195-024-00806-1. eCollection 2024 Oct.
3
Designing Coiled Coils for Heterochiral Complexation to Enhance Binding and Enzymatic Stability.
Biomacromolecules. 2024 Aug 12;25(8):5273-5280. doi: 10.1021/acs.biomac.4c00661. Epub 2024 Jul 9.
4
Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions.
Signal Transduct Target Ther. 2024 Jul 1;9(1):166. doi: 10.1038/s41392-024-01852-x.
5
Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons.
Nat Methods. 2024 Feb;21(2):342-352. doi: 10.1038/s41592-023-02137-x. Epub 2024 Jan 8.
6
Impact of Peptide Structure on Colonic Stability and Tissue Permeability.
Pharmaceutics. 2023 Jul 15;15(7):1956. doi: 10.3390/pharmaceutics15071956.
7
Peptide Assemblies for Cancer Therapy.
ChemMedChem. 2023 Sep 1;18(17):e202300258. doi: 10.1002/cmdc.202300258. Epub 2023 Jul 20.
8
Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles.
J Chem Theory Comput. 2023 Jul 25;19(14):4757-4769. doi: 10.1021/acs.jctc.3c00154. Epub 2023 May 26.
9
Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups.
ACS Appl Bio Mater. 2023 Feb 20;6(2):384-409. doi: 10.1021/acsabm.2c01041. Epub 2023 Feb 3.
10
Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
Acta Biomater. 2022 Mar 1;140:43-75. doi: 10.1016/j.actbio.2021.10.030. Epub 2021 Oct 25.

本文引用的文献

3
Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload.
Langmuir. 2012 Apr 10;28(14):6076-87. doi: 10.1021/la2041746. Epub 2012 Mar 27.
4
Self-assembling peptide scaffolds for regenerative medicine.
Chem Commun (Camb). 2012 Jan 4;48(1):26-33. doi: 10.1039/c1cc15551b. Epub 2011 Nov 14.
5
Supramolecular nanofibers and hydrogels of nucleopeptides.
Angew Chem Int Ed Engl. 2011 Sep 26;50(40):9365-9. doi: 10.1002/anie.201103641. Epub 2011 Aug 26.
6
Multifunctional, biocompatible supramolecular hydrogelators consist only of nucleobase, amino acid, and glycoside.
J Am Chem Soc. 2011 Nov 2;133(43):17513-8. doi: 10.1021/ja208456k. Epub 2011 Oct 7.
7
β-Galactosidase-instructed formation of molecular nanofibers and a hydrogel.
Nanoscale. 2011 Jul;3(7):2859-61. doi: 10.1039/c1nr10333d. Epub 2011 Jun 2.
8
Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns.
Science. 2011 Feb 4;331(6017):571-5. doi: 10.1126/science.1198461.
9
Gelation or molecular recognition; is the bis-(α,β-dihydroxy ester)s motif an omnigelator?
Beilstein J Org Chem. 2010 Nov 18;6:1079-88. doi: 10.3762/bjoc.6.123.
10
Molecular nanofibers of olsalazine form supramolecular hydrogels for reductive release of an anti-inflammatory agent.
J Am Chem Soc. 2010 Dec 22;132(50):17707-9. doi: 10.1021/ja109269v. Epub 2010 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验