Suppr超能文献

使用分子动力学模拟结果训练神经网络模型,以高效预测环状六肽结构集合。

Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles.

机构信息

Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States.

出版信息

J Chem Theory Comput. 2023 Jul 25;19(14):4757-4769. doi: 10.1021/acs.jctc.3c00154. Epub 2023 May 26.

Abstract

Cyclic peptides have emerged as a promising class of therapeutics. However, their design remains challenging, and many cyclic peptide drugs are simply natural products or their derivatives. Most cyclic peptides, including the current cyclic peptide drugs, adopt multiple conformations in water. The ability to characterize cyclic peptide structural ensembles would greatly aid their rational design. In a previous pioneering study, our group demonstrated that using molecular dynamics results to train machine learning models can efficiently predict structural ensembles of cyclic pentapeptides. Using this method, which was termed StrEAMM (uctural nsembles chieved by olecular Dynamics and achine Learning), linear regression models were able to predict the structural ensembles for an independent test set with = 0.94 between the predicted populations for specific structures and the observed populations in molecular dynamics simulations for cyclic pentapeptides. An underlying assumption in these StrEAMM models is that cyclic peptide structural preferences are predominantly influenced by neighboring interactions, namely, interactions between (1,2) and (1,3) residues. Here we demonstrate that for larger cyclic peptides such as cyclic hexapeptides, linear regression models including only (1,2) and (1,3) interactions fail to produce satisfactory predictions ( = 0.47); further inclusion of (1,4) interactions leads to moderate improvements ( = 0.75). We show that when using convolutional neural networks and graph neural networks to incorporate complex nonlinear interaction patterns, we can achieve = 0.97 and = 0.91 for cyclic pentapeptides and hexapeptides, respectively.

摘要

环肽已成为一类很有前途的治疗药物。然而,它们的设计仍然具有挑战性,许多环肽药物只是天然产物或其衍生物。大多数环肽,包括当前的环肽药物,在水中会采取多种构象。能够描述环肽结构集合将极大地帮助它们的合理设计。在之前的一项开拓性研究中,我们的团队证明,使用分子动力学结果来训练机器学习模型可以有效地预测环五肽的结构集合。使用这种方法,即 StrEAMM(通过分子动力学和机器学习实现的结构集合),线性回归模型能够预测独立测试集的结构集合,对于特定结构的预测群体和分子动力学模拟中观察到的群体之间的 = 0.94。在这些 StrEAMM 模型中,一个基本假设是环肽结构偏好主要受相邻相互作用的影响,即(1,2)和(1,3)残基之间的相互作用。在这里,我们证明对于更大的环肽,如环六肽,仅包括(1,2)和(1,3)相互作用的线性回归模型无法产生令人满意的预测(=0.47);进一步包括(1,4)相互作用会导致适度的改进(=0.75)。我们表明,当使用卷积神经网络和图神经网络来结合复杂的非线性相互作用模式时,我们可以分别实现环五肽和六肽的 = 0.97 和 = 0.91。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3eb/10373485/ebaaffd6cc5f/ct3c00154_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验