Rotman Research Institute at Baycrest Center, University of Toronto, Toronto, Canada.
Neuroimage. 2012 Nov 15;63(3):1384-92. doi: 10.1016/j.neuroimage.2012.08.018. Epub 2012 Aug 11.
We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation.
我们评估了这样一个假设,即大脑信号的可变性是记忆处理过程中功能网络重新配置的反映。在本实验中,我们使用多尺度熵来捕捉人类脑电图(EEG)的可变性,同时操纵与存储在记忆中的面孔相关的知识表示。在两个实验中,我们观察到随着知识表示的增加,可变性也增加了。在实验 1 中,个体对一组著名面孔的熟悉程度越高,大脑信号的可变性就越大。在实验 2 中,在多次接触以前不熟悉的面孔后,学习过程中大脑信号的可变性增加。结果表明,可变性随着面孔的熟悉程度而增加;在熟悉刺激的感知过程中,认知过程可能涉及更广泛的区域网络,这表现为空间和时间域中更高的复杂性/可变性。此外,还观察到了大脑信号可变性的重复抑制效应,并且结果模式与神经适应的选择性模型一致。