Suppr超能文献

静息态功能磁共振网络的复杂性组织。

Complexity organization of resting-state functional-MRI networks.

机构信息

Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

Hum Brain Mapp. 2024 Aug 15;45(12):e26809. doi: 10.1002/hbm.26809.

Abstract

Entropy measures are increasingly being used to analyze the structure of neural activity observed by functional magnetic resonance imaging (fMRI), with resting-state networks (RSNs) being of interest for their reproducible descriptions of the brain's functional architecture. Temporal correlations have shown a dichotomy among these networks: those that engage with the environment, known as extrinsic, which include the visual and sensorimotor networks; and those associated with executive control and self-referencing, known as intrinsic, which include the default mode network and the frontoparietal control network. While these inter-voxel temporal correlations enable the assessment of synchrony among the components of individual networks, entropic measures introduce an intra-voxel assessment that quantifies signal features encoded within each blood oxygen level-dependent (BOLD) time series. As a result, this framework offers insights into comprehending the representation and processing of information within fMRI signals. Multiscale entropy (MSE) has been proposed as a useful measure for characterizing the entropy of neural activity across different temporal scales. This measure of temporal entropy in BOLD data is dependent on the length of the time series; thus, high-quality data with fine-grained temporal resolution and a sufficient number of time frames is needed to improve entropy precision. We apply MSE to the Midnight Scan Club, a highly sampled and well-characterized publicly available dataset, to analyze the entropy distribution of RSNs and evaluate its ability to distinguish between different functional networks. Entropy profiles are compared across temporal scales and RSNs. Our results have shown that the spatial distribution of entropy at infra-slow frequencies (0.005-0.1 Hz) reproduces known parcellations of RSNs. We found a complexity hierarchy between intrinsic and extrinsic RSNs, with intrinsic networks robustly exhibiting higher entropy than extrinsic networks. Finally, we found new evidence that the topography of entropy in the posterior cerebellum exhibits high levels of entropy comparable to that of intrinsic RSNs.

摘要

熵测度越来越多地被用于分析功能磁共振成像 (fMRI) 观测到的神经活动结构,静息态网络 (RSN) 因其能够对大脑功能结构进行可重复的描述而受到关注。这些网络之间的时间相关性表现出二分法:与环境相互作用的网络,称为外在网络,包括视觉和感觉运动网络;以及与执行控制和自我参照相关的网络,称为内在网络,包括默认模式网络和额顶控制网络。虽然这些体素间的时间相关性能够评估个体网络组件之间的同步性,但熵测度引入了一种体素内评估,量化了每个血氧水平依赖 (BOLD) 时间序列中编码的信号特征。因此,该框架提供了对 fMRI 信号中信息表示和处理的深入理解。多尺度熵 (MSE) 已被提出作为一种有用的度量,用于描述不同时间尺度上的神经活动熵。这种 BOLD 数据的时间熵度量取决于时间序列的长度;因此,需要高质量的具有精细时间分辨率和足够多时间帧的数据,以提高熵的精度。我们将 MSE 应用于 Midnight Scan Club,这是一个高度采样且特征良好的公开可用数据集,以分析 RSN 的熵分布,并评估其区分不同功能网络的能力。在不同的时间尺度和 RSN 上比较熵谱。我们的结果表明,亚慢频率 (0.005-0.1 Hz) 的熵空间分布再现了已知的 RSN 分区。我们发现内在和外在 RSN 之间存在复杂层次结构,内在网络的熵明显高于外在网络。最后,我们发现新的证据表明,小脑后叶熵的地形表现出与内在 RSN 相当的高水平熵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aebb/11345701/7498ad72c368/HBM-45-e26809-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验