Suppr超能文献

参与拟杆菌属代谢淀粉的多功能碳水化合物结合蛋白。

Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism.

机构信息

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.

出版信息

J Biol Chem. 2012 Oct 5;287(41):34614-25. doi: 10.1074/jbc.M112.397380. Epub 2012 Aug 21.

Abstract

Human colonic bacteria are necessary for the digestion of many dietary polysaccharides. The intestinal symbiont Bacteroides thetaiotaomicron uses five outer membrane proteins to bind and degrade starch. Here, we report the x-ray crystallographic structures of SusE and SusF, two outer membrane proteins composed of tandem starch specific carbohydrate-binding modules (CBMs) with no enzymatic activity. Examination of the two CBMs in SusE and three CBMs in SusF reveals subtle differences in the way each binds starch and is reflected in their K(d) values for both high molecular weight starch and small maltooligosaccharides. Thus, each site seems to have a unique starch preference that may enable these proteins to interact with different regions of starch or its breakdown products. Proteins similar to SusE and SusF are encoded in many other polysaccharide utilization loci that are possessed by human gut bacteria in the phylum Bacteroidetes. Thus, these proteins are likely to play an important role in carbohydrate metabolism in these abundant symbiotic species. Understanding structural changes that diversify and adapt related proteins in the human gut microbial community will be critical to understanding the detailed mechanistic roles that they perform in the complex digestive ecosystem.

摘要

人类结肠细菌对于许多膳食多糖的消化是必需的。肠道共生菌拟杆菌(Bacteroides thetaiotaomicron)使用五种外膜蛋白来结合和降解淀粉。在这里,我们报告了两个串联淀粉特异性碳水化合物结合模块(CBMs)的外膜蛋白 SusE 和 SusF 的 X 射线晶体结构,它们没有酶活性。对 SusE 中的两个 CBM 和 SusF 中的三个 CBM 的检查揭示了每个模块结合淀粉的方式存在细微差异,这反映在它们对高分子量淀粉和小麦芽寡糖的 K(d)值上。因此,每个结合点似乎都有独特的淀粉偏好,这可能使这些蛋白质能够与淀粉或其降解产物的不同区域相互作用。在拟杆菌门的人类肠道细菌中拥有的许多其他多糖利用基因座中都编码了类似于 SusE 和 SusF 的蛋白质。因此,这些蛋白质可能在这些丰富的共生物种的碳水化合物代谢中发挥重要作用。了解使人类肠道微生物群落中相关蛋白质多样化和适应的结构变化,对于理解它们在复杂消化生态系统中所起的详细机制作用至关重要。

相似文献

1
Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism.
J Biol Chem. 2012 Oct 5;287(41):34614-25. doi: 10.1074/jbc.M112.397380. Epub 2012 Aug 21.
5
SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron.
Mol Microbiol. 2018 Jun;108(5):551-566. doi: 10.1111/mmi.13949. Epub 2018 Apr 14.
8
Suggested alternative starch utilization system from the human gut bacterium Bacteroides thetaiotaomicron.
Biochem Cell Biol. 2016 Jun;94(3):241-6. doi: 10.1139/bcb-2016-0002. Epub 2016 Feb 10.
9
The Starch Utilization System Assembles around Stationary Starch-Binding Proteins.
Biophys J. 2018 Jul 17;115(2):242-250. doi: 10.1016/j.bpj.2017.12.015. Epub 2018 Jan 12.
10
metabolic activity decreases with polysaccharide molecular weight.
mBio. 2024 Mar 13;15(3):e0259923. doi: 10.1128/mbio.02599-23. Epub 2024 Feb 20.

引用本文的文献

2
Acarbose impairs gut growth by targeting intracellular glucosidases.
mBio. 2024 Dec 11;15(12):e0150624. doi: 10.1128/mbio.01506-24. Epub 2024 Nov 20.
3
Acarbose Impairs Gut Growth by Targeting Intracellular GH97 Enzymes.
bioRxiv. 2024 May 23:2024.05.20.595031. doi: 10.1101/2024.05.20.595031.
4
Polysaccharide utilization loci encoded DUF1735 likely functions as membrane-bound spacer for carbohydrate active enzymes.
FEBS Open Bio. 2024 Jul;14(7):1133-1146. doi: 10.1002/2211-5463.13816. Epub 2024 May 12.
5
Prazmowski can degrade and utilize resistant starch via a set of synergistically acting enzymes.
mSphere. 2024 Jan 30;9(1):e0056623. doi: 10.1128/msphere.00566-23. Epub 2023 Dec 22.
8
glucans: a potential source for maintaining gut microbiota and the immune system.
Front Nutr. 2023 May 5;10:1143682. doi: 10.3389/fnut.2023.1143682. eCollection 2023.
9
Traditional mineral medicine realgar and potentially exerted therapeutic effects by altering the gut microbiota.
Front Microbiol. 2023 Apr 18;14:1143173. doi: 10.3389/fmicb.2023.1143173. eCollection 2023.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
How glycan metabolism shapes the human gut microbiota.
Nat Rev Microbiol. 2012 Apr 11;10(5):323-35. doi: 10.1038/nrmicro2746.
3
Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.
PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.
4
The Pfam protein families database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.
6
The conformation and function of a multimodular glycogen-degrading pneumococcal virulence factor.
Structure. 2011 May 11;19(5):640-51. doi: 10.1016/j.str.2011.03.001.
7
Lipoproteins of bacterial pathogens.
Infect Immun. 2011 Feb;79(2):548-61. doi: 10.1128/IAI.00682-10. Epub 2010 Oct 25.
8
Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations.
Cell. 2010 Jun 25;141(7):1241-52. doi: 10.1016/j.cell.2010.05.005. Epub 2010 Jun 24.
9
Expansion of the protein repertoire in newly explored environments: human gut microbiome specific protein families.
PLoS Comput Biol. 2010 Jun 3;6(6):e1000798. doi: 10.1371/journal.pcbi.1000798.
10
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验