Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Center for Transdisciplinary Research, Niigata University, Niigata 951-8585, Japan.
J Biol Chem. 2012 Oct 12;287(42):35222-35233. doi: 10.1074/jbc.M112.348300. Epub 2012 Aug 21.
Alzheimer disease (AD) is neuropathologically characterized by the formation of senile plaques from amyloid-β (Aβ) and neurofibrillary tangles composed of phosphorylated Tau. Although there is growing evidence for the pathogenic role of soluble Aβ species in AD, the major question of how Aβ induces hyperphosphorylation of Tau remains unanswered. To address this question, we here developed a novel cell coculture system to assess the effect of extracellular Aβ at physiologically relevant levels naturally secreted from donor cells on the phosphorylation of Tau in recipient cells. Using this assay, we demonstrated that physiologically relevant levels of secreted Aβ are sufficient to cause hyperphosphorylation of Tau in recipient N2a cells expressing human Tau and in primary culture neurons. This hyperphosphorylation of Tau is inhibited by blocking Aβ production in donor cells. The expression of familial AD-linked PSEN1 mutants and APP ΔE693 mutant that induce the production of oligomeric Aβ in donor cells results in a similar hyperphosphorylation of Tau in recipient cells. The mechanism underlying the Aβ-induced Tau hyperphosphorylation is mediated by the impaired insulin signal transduction because we demonstrated that the phosphorylation of Akt and GSK3β upon insulin stimulation is less activated under this condition. Treating cells with the insulin-sensitizing drug rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, attenuates the Aβ-dependent hyperphosphorylation of Tau. These findings suggest that the disturbed insulin signaling cascade may be implicated in the pathways through which soluble Aβ induces Tau phosphorylation and further support the notion that correcting insulin signal dysregulation in AD may offer a potential therapeutic approach.
阿尔茨海默病(AD)的病理学特征是由淀粉样β(Aβ)形成的老年斑和由磷酸化 Tau 组成的神经原纤维缠结。尽管越来越多的证据表明可溶性 Aβ 物种在 AD 中的致病作用,但 Aβ如何诱导 Tau 过度磷酸化的主要问题仍未得到解答。为了解决这个问题,我们开发了一种新的细胞共培养系统,以评估来自供体细胞自然分泌的、生理相关水平的细胞外 Aβ对受体细胞中 Tau 磷酸化的影响。使用该测定法,我们证明了生理相关水平的分泌 Aβ足以引起表达人 Tau 的受体细胞 N2a 细胞和原代培养神经元中 Tau 的过度磷酸化。在供体细胞中阻断 Aβ产生可抑制 Tau 的这种过度磷酸化。在供体细胞中表达家族性 AD 相关的 PSEN1 突变体和 APP ΔE693 突变体,诱导寡聚 Aβ的产生,导致受体细胞中 Tau 的类似过度磷酸化。Aβ诱导 Tau 过度磷酸化的机制是通过胰岛素信号转导受损介导的,因为我们证明在这种情况下,胰岛素刺激下 Akt 和 GSK3β 的磷酸化激活较少。用胰岛素增敏药物罗格列酮(一种过氧化物酶体增殖物激活受体γ激动剂)处理细胞,可减轻 Aβ依赖性 Tau 过度磷酸化。这些发现表明,胰岛素信号级联的紊乱可能与可溶性 Aβ诱导 Tau 磷酸化的途径有关,并进一步支持了这样一种观点,即纠正 AD 中的胰岛素信号失调可能提供一种潜在的治疗方法。