Suppr超能文献

玉米茎尖花转变的基因调控网络模型及其动态建模。

A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling.

机构信息

DuPont Pioneer, Johnston, Iowa, United States of America.

出版信息

PLoS One. 2012;7(8):e43450. doi: 10.1371/journal.pone.0043450. Epub 2012 Aug 17.

Abstract

The transition from the vegetative to reproductive development is a critical event in the plant life cycle. The accurate prediction of flowering time in elite germplasm is important for decisions in maize breeding programs and best agronomic practices. The understanding of the genetic control of flowering time in maize has significantly advanced in the past decade. Through comparative genomics, mutant analysis, genetic analysis and QTL cloning, and transgenic approaches, more than 30 flowering time candidate genes in maize have been revealed and the relationships among these genes have been partially uncovered. Based on the knowledge of the flowering time candidate genes, a conceptual gene regulatory network model for the genetic control of flowering time in maize is proposed. To demonstrate the potential of the proposed gene regulatory network model, a first attempt was made to develop a dynamic gene network model to predict flowering time of maize genotypes varying for specific genes. The dynamic gene network model is composed of four genes and was built on the basis of gene expression dynamics of the two late flowering id1 and dlf1 mutants, the early flowering landrace Gaspe Flint and the temperate inbred B73. The model was evaluated against the phenotypic data of the id1 dlf1 double mutant and the ZMM4 overexpressed transgenic lines. The model provides a working example that leverages knowledge from model organisms for the utilization of maize genomic information to predict a whole plant trait phenotype, flowering time, of maize genotypes.

摘要

从营养生长到生殖生长的转变是植物生命周期中的一个关键事件。在玉米的育种计划和最佳农艺实践中,准确预测开花时间对于决策非常重要。在过去的十年中,人们对玉米开花时间的遗传控制有了显著的了解。通过比较基因组学、突变体分析、遗传分析和 QTL 克隆以及转基因方法,已经揭示了 30 多个玉米开花时间候选基因,并部分揭示了这些基因之间的关系。基于对开花时间候选基因的了解,提出了一个用于玉米开花时间遗传控制的概念性基因调控网络模型。为了证明所提出的基因调控网络模型的潜力,首次尝试开发了一个动态基因网络模型来预测具有特定基因的玉米基因型的开花时间。该动态基因网络模型由四个基因组成,基于两个晚开花的 id1 和 dlf1 突变体、早开花的 Gaspe Flint 地方品种和温带自交系 B73 的基因表达动态构建。该模型是针对 id1 dlf1 双突变体和 ZMM4 过表达转基因系的表型数据进行评估的。该模型提供了一个工作示例,利用模式生物的知识来利用玉米基因组信息来预测玉米基因型的整个植物性状表型,即开花时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3120/3422250/b114b987b1fe/pone.0043450.g001.jpg

相似文献

1
A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling.
PLoS One. 2012;7(8):e43450. doi: 10.1371/journal.pone.0043450. Epub 2012 Aug 17.
2
delayed flowering1 Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize.
Plant Physiol. 2006 Dec;142(4):1523-36. doi: 10.1104/pp.106.088815. Epub 2006 Oct 27.
3
Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize.
Plant Physiol. 2008 Aug;147(4):2054-69. doi: 10.1104/pp.107.115261. Epub 2008 Jun 6.
4
Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.
Plant Physiol. 2016 Sep;172(1):389-404. doi: 10.1104/pp.16.00285. Epub 2016 Jul 25.
6
Identification of ZmNF-YC2 and its regulatory network for maize flowering time.
J Exp Bot. 2021 Dec 4;72(22):7792-7807. doi: 10.1093/jxb/erab364.
7
A comprehensive study of the genomic differentiation between temperate Dent and Flint maize.
Genome Biol. 2016 Jul 8;17(1):137. doi: 10.1186/s13059-016-1009-x.
8
The circadian clock-associated gene gigantea1 affects maize developmental transitions.
Plant Cell Environ. 2013 Jul;36(7):1379-90. doi: 10.1111/pce.12067. Epub 2013 Feb 28.
9
The FT-like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.
Plant Cell. 2011 Mar;23(3):942-60. doi: 10.1105/tpc.110.081406. Epub 2011 Mar 25.
10
Genetic dissection of maize phenology using an intraspecific introgression library.
BMC Plant Biol. 2011 Jan 6;11:4. doi: 10.1186/1471-2229-11-4.

引用本文的文献

2
Toward a general framework for AI-enabled prediction in crop improvement.
Theor Appl Genet. 2025 Jun 12;138(7):151. doi: 10.1007/s00122-025-04928-6.
3
Individual plant genetics reveal the control of local adaptation in European maize landraces.
BMC Biol. 2025 May 21;23(1):138. doi: 10.1186/s12915-025-02241-8.
5
A LTR retrotransposon insertion leads to leafy phenotype in maize by elevating ZmOM66 expression.
Nat Commun. 2025 Apr 2;16(1):3152. doi: 10.1038/s41467-025-57811-9.
6
Improved genomic prediction performance with ensembles of diverse models.
G3 (Bethesda). 2025 May 8;15(5). doi: 10.1093/g3journal/jkaf048.
7
Establishing an optimized ATAC-seq protocol for the maize.
Front Plant Sci. 2024 May 28;15:1370618. doi: 10.3389/fpls.2024.1370618. eCollection 2024.
8
QTL mapping for plant height and ear height using bi-parental immortalized heterozygous populations in maize.
Front Plant Sci. 2024 Mar 25;15:1371394. doi: 10.3389/fpls.2024.1371394. eCollection 2024.
9
Photoperiodic and lighting treatments for flowering control and its genetic regulation in sugarcane breeding.
Heliyon. 2024 Mar 26;10(7):e28531. doi: 10.1016/j.heliyon.2024.e28531. eCollection 2024 Apr 15.

本文引用的文献

1
ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21. doi: 10.1073/pnas.1203189109. Epub 2012 Jun 18.
2
LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1.
Development. 2011 Aug;138(15):3189-98. doi: 10.1242/dev.063073.
3
The FT-like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.
Plant Cell. 2011 Mar;23(3):942-60. doi: 10.1105/tpc.110.081406. Epub 2011 Mar 25.
4
Robust expression and association of ZmCCA1 with circadian rhythms in maize.
Plant Cell Rep. 2011 Jul;30(7):1261-72. doi: 10.1007/s00299-011-1036-8. Epub 2011 Feb 16.
5
Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156.
Development. 2011 Jan;138(2):245-9. doi: 10.1242/dev.058578. Epub 2010 Dec 9.
6
Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.
J Exp Bot. 2011 Jan;62(3):855-68. doi: 10.1093/jxb/erq329. Epub 2010 Nov 1.
7
Regulation of flowering time and floral patterning by miR172.
J Exp Bot. 2011 Jan;62(2):487-95. doi: 10.1093/jxb/erq295. Epub 2010 Oct 15.
8
Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development.
Plant Cell Physiol. 2010 Nov;51(11):1854-68. doi: 10.1093/pcp/pcq153. Epub 2010 Oct 11.
9
The past, present, and future of vegetative phase change.
Plant Physiol. 2010 Oct;154(2):541-4. doi: 10.1104/pp.110.161620.
10
The timing of flowering.
Plant Physiol. 2010 Oct;154(2):516-20. doi: 10.1104/pp.110.161653.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验