Suppr超能文献

通过多种不同模型的集成提高基因组预测性能。

Improved genomic prediction performance with ensembles of diverse models.

作者信息

Tomura Shunichiro, Wilkinson Melanie J, Cooper Mark, Powell Owen

机构信息

Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Crop Science, The University of Queensland, St Lucia, QLD 4072, Australia.

ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia.

出版信息

G3 (Bethesda). 2025 May 8;15(5). doi: 10.1093/g3journal/jkaf048.

Abstract

The improvement of selection accuracy of genomic prediction is a key factor in accelerating genetic gain for crop breeding. Traditionally, efforts have focused on developing superior individual genomic prediction models. However, this approach has limitations due to the absence of a consistently "best" individual genomic prediction model, as suggested by the No Free Lunch Theorem. The No Free Lunch Theorem states that the performance of an individual prediction model is expected to be equivalent to the others when averaged across all prediction scenarios. To address this, we explored an alternative method: combining multiple genomic prediction models into an ensemble. The investigation of ensembles of prediction models is motivated by the Diversity Prediction Theorem, which indicates the prediction error of the many-model ensemble should be less than the average error of the individual models due to the diversity of predictions among the individual models. To investigate the implications of the No Free Lunch and Diversity Prediction Theorems, we developed a naïve ensemble-average model, which equally weights the predicted phenotypes of individual models. We evaluated this model using 2 traits influencing crop yield-days to anthesis and tiller number per plant-in the teosinte nested association mapping dataset. The results show that the ensemble approach increased prediction accuracies and reduced prediction errors over individual genomic prediction models. The advantage of the ensemble was derived from the diverse predictions among the individual models, suggesting the ensemble captures a more comprehensive view of the genomic architecture of these complex traits. These results are in accordance with the expectations of the Diversity Prediction Theorem and suggest that ensemble approaches can enhance genomic prediction performance and accelerate genetic gain in crop breeding programs.

摘要

提高基因组预测的选择准确性是加速作物育种遗传增益的关键因素。传统上,人们致力于开发更优的个体基因组预测模型。然而,正如“没有免费的午餐”定理所表明的,由于不存在始终“最佳”的个体基因组预测模型,这种方法存在局限性。“没有免费的午餐”定理指出,当在所有预测场景中进行平均时,单个预测模型的性能预计与其他模型相当。为了解决这个问题,我们探索了一种替代方法:将多个基因组预测模型组合成一个集成模型。对预测模型集成的研究是受“多样性预测定理”的推动,该定理表明,由于个体模型之间预测的多样性,多模型集成的预测误差应小于个体模型的平均误差。为了研究“没有免费的午餐”定理和“多样性预测定理”的影响,我们开发了一个简单的集成平均模型,该模型对个体模型预测的表型进行同等加权。我们在玉米属嵌套关联作图数据集中,使用影响作物产量的两个性状——开花天数和单株分蘖数,对该模型进行了评估。结果表明,与个体基因组预测模型相比,集成方法提高了预测准确性并降低了预测误差。集成的优势源于个体模型之间的多样预测,这表明集成模型对这些复杂性状的基因组结构有更全面的认识。这些结果符合“多样性预测定理”的预期,并表明集成方法可以提高基因组预测性能,加速作物育种计划中的遗传增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a2/12060242/442c06b914fe/jkaf048f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验