Suppr超能文献

用循环生物标志物预测白种人和日裔美国女性的全身、腹部、内脏和肝脂肪量。

Predicting total, abdominal, visceral and hepatic adiposity with circulating biomarkers in Caucasian and Japanese American women.

机构信息

Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America.

出版信息

PLoS One. 2012;7(8):e43502. doi: 10.1371/journal.pone.0043502. Epub 2012 Aug 17.

Abstract

BACKGROUND

Characterization of abdominal and intra-abdominal fat requires imaging, and thus is not feasible in large epidemiologic studies.

OBJECTIVE

We investigated whether biomarkers may complement anthropometry (body mass index [BMI], waist circumference [WC], and waist-hip ratio [WHR]) in predicting the size of the body fat compartments by analyzing blood biomarkers, including adipocytokines, insulin resistance markers, sex steroid hormones, lipids, liver enzymes and gastro-neuropeptides.

METHODS

Fasting levels of 58 blood markers were analyzed in 60 healthy, Caucasian or Japanese American postmenopausal women who underwent anthropometric measurements, dual energy X-ray absorptiometry (DXA), and abdominal magnetic resonance imaging. Total, abdominal, visceral and hepatic adiposity were predicted based on anthropometry and the biomarkers using Random Forest models.

RESULTS

Total body fat was well predicted by anthropometry alone (R(2) = 0.85), by the 5 best predictors from the biomarker model alone (leptin, leptin-adiponectin ratio [LAR], free estradiol, plasminogen activator inhibitor-1 [PAI1], alanine transaminase [ALT]; R(2) = 0.69), or by combining these 5 biomarkers with anthropometry (R(2) = 0.91). Abdominal adiposity (DXA trunk-to-periphery fat ratio) was better predicted by combining the two types of predictors (R(2) = 0.58) than by anthropometry alone (R(2) = 0.53) or the 5 best biomarkers alone (25(OH)-vitamin D(3), insulin-like growth factor binding protein-1 [IGFBP1], uric acid, soluble leptin receptor [sLEPR], Coenzyme Q10; R(2) = 0.35). Similarly, visceral fat was slightly better predicted by combining the predictors (R(2) = 0.68) than by anthropometry alone (R(2) = 0.65) or the 5 best biomarker predictors alone (leptin, C-reactive protein [CRP], LAR, lycopene, vitamin D(3); R(2) = 0.58). Percent liver fat was predicted better by the 5 best biomarker predictors (insulin, sex hormone binding globulin [SHBG], LAR, alpha-tocopherol, PAI1; R(2) = 0.42) or by combining the predictors (R(2) = 0.44) than by anthropometry alone (R(2) = 0.29).

CONCLUSION

The predictive ability of anthropometry for body fat distribution may be enhanced by measuring a small number of biomarkers. Studies to replicate these data in men and other ethnic groups are warranted.

摘要

背景

腹部和腹腔内脂肪的特征需要通过影像学进行评估,因此在大型流行病学研究中并不可行。

目的

我们通过分析包括脂肪细胞因子、胰岛素抵抗标志物、性激素、脂质、肝酶和胃肠肽在内的血液生物标志物,研究生物标志物是否可以补充人体测量学(体重指数[BMI]、腰围[WC]和腰臀比[WHR]),从而预测体脂肪的大小。

方法

对 60 名健康的白种或日裔美国绝经后妇女进行人体测量学测量、双能 X 射线吸收法(DXA)和腹部磁共振成像,分析 58 种血液标志物的空腹水平。使用随机森林模型,根据人体测量学和生物标志物预测总、腹部、内脏和肝脂肪。

结果

仅人体测量学就能很好地预测总体体脂(R² = 0.85),仅 5 种最佳生物标志物模型预测因子(瘦素、瘦素-脂联素比[LAR]、游离雌二醇、纤溶酶原激活物抑制剂-1[PAI1]、丙氨酸氨基转移酶[ALT];R² = 0.69),或结合这 5 种生物标志物与人体测量学(R² = 0.91)也能很好地预测总体体脂。仅结合这两种预测因子(R² = 0.58)就能更好地预测腹部脂肪(DXA 躯干-外周脂肪比),而仅人体测量学(R² = 0.53)或 5 种最佳生物标志物单独预测(25-羟维生素 D3(25(OH)-vitamin D3)、胰岛素样生长因子结合蛋白-1[IGFBP1]、尿酸、可溶性瘦素受体[sLEPR]、辅酶 Q10;R² = 0.35)则效果不佳。同样,仅结合预测因子(R² = 0.68)也能更好地预测内脏脂肪,而仅人体测量学(R² = 0.65)或 5 种最佳生物标志物预测因子单独预测(瘦素、C 反应蛋白[CRP]、LAR、番茄红素、维生素 D3;R² = 0.58)效果不佳。仅 5 种最佳生物标志物预测因子(胰岛素、性激素结合球蛋白[SHBG]、LAR、α-生育酚、PAI1;R² = 0.42)或结合预测因子(R² = 0.44)对肝脂肪百分比的预测效果优于仅人体测量学(R² = 0.29)。

结论

人体测量学对体脂分布的预测能力可以通过测量少量生物标志物来增强。有必要在男性和其他种族群体中复制这些数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd4/3422255/4e0e139b626d/pone.0043502.g001.jpg

相似文献

4
The relationship between DXA-based and anthropometric measures of visceral fat and morbidity in women.
BMC Cardiovasc Disord. 2013 Apr 3;13:25. doi: 10.1186/1471-2261-13-25.
6
Intraperitoneal fat and insulin resistance in obese adolescents.
Obesity (Silver Spring). 2010 Feb;18(2):402-9. doi: 10.1038/oby.2009.261. Epub 2009 Aug 27.
8
Propensity for Intra-abdominal and Hepatic Adiposity Varies Among Ethnic Groups.
Gastroenterology. 2019 Mar;156(4):966-975.e10. doi: 10.1053/j.gastro.2018.11.021. Epub 2018 Nov 13.

引用本文的文献

2
Prediction of future visceral adiposity and application to cancer research: The Multiethnic Cohort Study.
PLoS One. 2024 Jul 18;19(7):e0306606. doi: 10.1371/journal.pone.0306606. eCollection 2024.
3
Reduced plasma glycine concentration in healthy and chronically diseased older adults: a marker of visceral adiposity?
Am J Clin Nutr. 2024 Jun;119(6):1455-1464. doi: 10.1016/j.ajcnut.2024.04.008. Epub 2024 Apr 12.
10
Associations of Infant Feeding with Body Composition and Cardiometabolic Health in Young Female University Students.
J Womens Health (Larchmt). 2022 Sep;31(9):1358-1363. doi: 10.1089/jwh.2021.0464. Epub 2022 Feb 17.

本文引用的文献

3
Adiponectin as an independent predictor of the presence and degree of hepatic steatosis in the Dallas Heart Study.
J Clin Endocrinol Metab. 2012 Jun;97(6):E982-6. doi: 10.1210/jc.2011-3305. Epub 2012 Mar 21.
4
Performance evaluation of a multiplex assay for future use in biomarker discovery efforts to predict body composition.
Clin Chem Lab Med. 2011 May;49(5):817-24. doi: 10.1515/CCLM.2011.122. Epub 2011 Mar 2.
8
The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences.
Obesity (Silver Spring). 2011 Feb;19(2):402-8. doi: 10.1038/oby.2010.248. Epub 2010 Oct 14.
9
Noninvasive investigations for non alcoholic fatty liver disease and liver fibrosis.
World J Gastroenterol. 2010 Oct 14;16(38):4784-91. doi: 10.3748/wjg.v16.i38.4784.
10
Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta2-adrenergic receptor genetic variation in twins.
Gastroenterology. 2010 Sep;139(3):836-45, 845.e1. doi: 10.1053/j.gastro.2010.06.009. Epub 2010 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验