Suppr超能文献

LIPID11:一个使用 AMBER 进行脂质模拟的模块化框架。

LIPID11: a modular framework for lipid simulations using amber.

机构信息

Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.

出版信息

J Phys Chem B. 2012 Sep 13;116(36):11124-36. doi: 10.1021/jp3059992. Epub 2012 Sep 4.

Abstract

Accurate simulation of complex lipid bilayers has long been a goal in condensed phase molecular dynamics (MD). Structure and function of membrane-bound proteins are highly dependent on the lipid bilayer environment and are challenging to study through experimental methods. Within Amber, there has been limited focus on lipid simulations, although some success has been seen with the use of the General Amber Force Field (GAFF). However, to date there are no dedicated Amber lipid force fields. In this paper we describe a new charge derivation strategy for lipids consistent with the Amber RESP approach and a new atom and residue naming and type convention. In the first instance, we have combined this approach with GAFF parameters. The result is LIPID11, a flexible, modular framework for the simulation of lipids that is fully compatible with the existing Amber force fields. The charge derivation procedure, capping strategy, and nomenclature for LIPID11, along with preliminary simulation results and a discussion of the planned long-term parameter development are presented here. Our findings suggest that LIPID11 is a modular framework feasible for phospholipids and a flexible starting point for the development of a comprehensive, Amber-compatible lipid force field.

摘要

准确模拟复杂的脂质双层一直是凝聚相分子动力学(MD)的目标。膜结合蛋白的结构和功能高度依赖于脂质双层环境,通过实验方法进行研究具有挑战性。在 Amber 中,虽然使用通用 Amber 力场(GAFF)已经取得了一些成功,但对脂质模拟的关注有限。然而,迄今为止,还没有专门的 Amber 脂质力场。本文描述了一种与 Amber RESP 方法一致的新脂质电荷推导策略,以及一种新的原子和残基命名和类型约定。在第一种情况下,我们将这种方法与 GAFF 参数相结合。结果是 LIPID11,这是一个灵活的、模块化的脂质模拟框架,与现有的 Amber 力场完全兼容。本文介绍了 LIPID11 的电荷推导程序、封端策略和命名法,以及初步的模拟结果和对计划中的长期参数开发的讨论。我们的研究结果表明,LIPID11 是一种适用于磷脂的模块化框架,也是开发全面的、与 Amber 兼容的脂质力场的灵活起点。

相似文献

1
LIPID11: a modular framework for lipid simulations using amber.
J Phys Chem B. 2012 Sep 13;116(36):11124-36. doi: 10.1021/jp3059992. Epub 2012 Sep 4.
2
Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble.
J Biomol Struct Dyn. 2014;32(1):88-103. doi: 10.1080/07391102.2012.750250. Epub 2013 Jun 3.
3
All-atom lipid bilayer self-assembly with the AMBER and CHARMM lipid force fields.
Chem Commun (Camb). 2015 Mar 14;51(21):4402-5. doi: 10.1039/c4cc09584g.
4
A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field.
J Phys Chem B. 2015 Sep 24;119(38):12424-35. doi: 10.1021/acs.jpcb.5b04924. Epub 2015 Sep 11.
5
Lipid21: Complex Lipid Membrane Simulations with AMBER.
J Chem Theory Comput. 2022 Mar 8;18(3):1726-1736. doi: 10.1021/acs.jctc.1c01217. Epub 2022 Feb 3.
6
Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
Biochim Biophys Acta Biomembr. 2018 Oct;1860(10):2134-2144. doi: 10.1016/j.bbamem.2017.11.010. Epub 2017 Nov 21.
7
CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
J Chem Theory Comput. 2016 Jan 12;12(1):405-13. doi: 10.1021/acs.jctc.5b00935. Epub 2015 Dec 3.
8
A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers.
J Phys Chem B. 2016 Apr 28;120(16):3888-903. doi: 10.1021/acs.jpcb.6b01870. Epub 2016 Apr 14.
9
Biomolecular simulations with the transferable potentials for phase equilibria: extension to phospholipids.
J Phys Chem B. 2013 Aug 29;117(34):9910-21. doi: 10.1021/jp404314k. Epub 2013 Aug 16.
10
Improvement of Parameters of the AMBER Potential Force Field for Phospholipids for Description of Thermal Phase Transitions.
J Phys Chem B. 2015 Jul 30;119(30):9726-39. doi: 10.1021/acs.jpcb.5b01656. Epub 2015 Jul 10.

引用本文的文献

1
Unveiling the Interactions of Doxorubicin with the Lipid Components of Liposomes for Its Delivery.
J Phys Chem B. 2025 May 15;129(19):4715-4727. doi: 10.1021/acs.jpcb.5c00523. Epub 2025 May 6.
2
Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.
Mol Pharm. 2025 Mar 3;22(3):1110-1141. doi: 10.1021/acs.molpharmaceut.4c00744. Epub 2025 Jan 29.
3
Biophysical Modelling for Insight into Oxygen Diffusion, Distribution, and Measurement.
Adv Exp Med Biol. 2024;1463:9-14. doi: 10.1007/978-3-031-67458-7_2.
4
Simulation of Linear and Cyclic Alkanes with Second-Order Møller-Plesset Perturbation Theory through Adaptive Force Matching.
J Chem Theory Comput. 2024 Jun 25;20(12):5241-5249. doi: 10.1021/acs.jctc.4c00509. Epub 2024 Jun 7.
6
Effect of Monovalent Cations on the Structure and Dynamics of Multimodal Chromatographic Surfaces.
Langmuir. 2024 Apr 2;40(13):6694-6702. doi: 10.1021/acs.langmuir.3c03294. Epub 2024 Mar 22.
9
Atomistic simulations modify interpretation of spin-label oximetry data. Part 1: intensified water-lipid interfacial resistances.
Appl Magn Reson. 2021 Oct;52(10):1261-1289. doi: 10.1007/s00723-021-01398-z. Epub 2021 Sep 12.
10
Dynamic Processes and Mechanical Properties of Lipid-Nanoparticle Mixtures.
Polymers (Basel). 2023 Apr 9;15(8):1828. doi: 10.3390/polym15081828.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born.
J Chem Theory Comput. 2012 May 8;8(5):1542-1555. doi: 10.1021/ct200909j. Epub 2012 Mar 26.
3
Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids.
J Phys Chem B. 2012 Mar 15;116(10):3164-79. doi: 10.1021/jp212503e. Epub 2012 Mar 1.
4
Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.
Mol Simul. 2008;34(4):349-363. doi: 10.1080/08927020701710890.
5
Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature.
Biochim Biophys Acta. 2011 Nov;1808(11):2761-71. doi: 10.1016/j.bbamem.2011.07.022. Epub 2011 Jul 23.
6
Intramolecular hydrogen bonding in articaine can be related to superior bone tissue penetration: a molecular dynamics study.
Biophys Chem. 2011 Feb;154(1):18-25. doi: 10.1016/j.bpc.2010.12.002. Epub 2010 Dec 16.
7
Lipidbook: a public repository for force-field parameters used in membrane simulations.
J Membr Biol. 2010 Aug;236(3):255-8. doi: 10.1007/s00232-010-9296-8. Epub 2010 Aug 11.
8
Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes.
J Phys Chem B. 2010 Jul 29;114(29):9504-9. doi: 10.1021/jp102389k.
9
The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.
Phys Chem Chem Phys. 2010 Jul 28;12(28):7821-39. doi: 10.1039/c0cp00111b. Epub 2010 Jun 23.
10
Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
J Phys Chem B. 2010 Jun 17;114(23):7830-43. doi: 10.1021/jp101759q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验