Suppr超能文献

脂质介导的活性药物成分递送建模的计算方法

Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.

作者信息

Paloncýová Markéta, Valério Mariana, Dos Santos Ricardo Nascimento, Kührová Petra, Šrejber Martin, Čechová Petra, Dobchev Dimitar A, Balsubramani Akshay, Banáš Pavel, Agarwal Vikram, Souza Paulo C T, Otyepka Michal

机构信息

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.

Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France.

出版信息

Mol Pharm. 2025 Mar 3;22(3):1110-1141. doi: 10.1021/acs.molpharmaceut.4c00744. Epub 2025 Jan 29.

Abstract

Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.

摘要

脂质介导的活性药物成分(API)递送为先进疗法开辟了新的可能性。通过将API封装到脂质纳米载体(LNC)中,可以安全地递送不溶于水的API、具有强烈不良反应的API或非常脆弱的API,如核酸。然而,对于LNC的合理设计,尚缺乏对组成-结构-功能关系的详细了解。本综述介绍了目前用于LNC研究、筛选和设计的计算方法。描述了基于物理学的先进方法,重点是全原子和粗粒度分辨率的分子动力学模拟。讨论了它们的优缺点,强调了在模拟中获得可靠结果所需的方面。此外,还介绍了一种用于脂质介导的API递送设计的机器学习方法,即基于数据的学习方法。实验和理论方法产生的数据提供了有价值的见解。处理这些数据有助于优化LNC的设计以获得更好的性能。在本综述的最后一部分,对LNC的计算机模拟的最新进展进行了综述,特别讨论了实验和计算见解的兼容性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56bd/11881150/3d3161ebc85f/mp4c00744_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验