CNRS UMR 6219 & UFR Pharmacie, Université de Picardie-Jules Verne, 1, rue des Louvels, F-80037 Amiens cedex 1, France.
Phys Chem Chem Phys. 2010 Jul 28;12(28):7821-39. doi: 10.1039/c0cp00111b. Epub 2010 Jun 23.
Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.
当需要使用分子力学进行结构和能量分析时,为新分子推导原子电荷并构建力场库是关键步骤。为一组残基推导流行的 RESP 电荷是一个复杂且容易出错的过程,因为它取决于许多输入参数。为了克服这些问题,开发了 R.E.D. Tools(RESP 和 ESP 电荷推导),以便以自动和直接的方式进行电荷推导。R.E.D. 程序可处理周期表中溴之前的化学元素。它与用于几何优化和计算分子静电势的不同量子力学程序接口,并使用 RESP 程序进行电荷拟合。通过定义严格的优化标准并控制每个优化几何形状的分子取向,可以在任何计算机平台上以 0.0001e 的精度重现电荷值。可以使用多个构象拟合电荷,使其适用于分子动力学模拟。R.E.D. 还允许在多个分子电荷拟合期间定义电荷约束,用于为分子片段推导电荷。最后,R.E.D. 将电荷纳入力场库中,可在分子动力学计算机包中直接使用。对于复杂情况,例如属于同一类的一组同源分子,会生成整个力场拓扑数据库。目前,已经为五十多个模型系统开发了原子电荷和力场库,并存储在 RESP ESP 电荷 DDataBase 中。本文介绍并讨论了与非极化电荷模型相关的选定结果。