California State Polytechnic University, Pomona, California 91768, USA.
Astrobiology. 2012 Sep;12(9):854-62. doi: 10.1089/ast.2012.0835. Epub 2012 Aug 23.
The microbiology of the spacecraft assembly process is of paramount importance to planetary exploration, as the biological contamination that can result from remote-enabled spacecraft carries the potential to impact both life-detection experiments and extraterrestrial evolution. Accordingly, insights into the mechanisms and range of extremotolerance of Acinetobacter radioresistens 50v1, a Gram-negative bacterium isolated from the surface of the preflight Mars Odyssey orbiter, were gained by using a combination of microbiological, enzymatic, and proteomic methods. In summary, A. radioresistens 50v1 displayed a remarkable range of survival against hydrogen peroxide and the sequential exposures of desiccation, vapor and plasma phase hydrogen peroxide, and ultraviolet irradiation. The survival is among the highest reported for non-spore-forming and Gram-negative bacteria and is based upon contributions from the enzyme-based degradation of H(2)O(2) (catalase and alkyl hydroperoxide reductase), energy management (ATP synthase and alcohol dehydrogenase), and modulation of the membrane composition. Together, the biochemical and survival features of A. radioresistens 50v1 support a potential persistence on Mars (given an unintended or planned surface landing of the Mars Odyssey orbiter), which in turn may compromise the scientific integrity of future life-detection missions.
航天器组装过程中的微生物学对于行星探索至关重要,因为远程控制的航天器可能带来的生物污染有可能影响生命探测实验和外星演化。因此,通过使用微生物学、酶学和蛋白质组学方法的组合,获得了从火星奥德赛轨道飞行器表面分离出的革兰氏阴性菌耐辐射不动杆菌 50v1 的极端耐受力机制和范围的深入了解。总的来说,耐辐射不动杆菌 50v1 对过氧化氢和干燥、蒸气和等离子体相过氧化氢以及紫外线照射的连续暴露具有显著的存活能力。这种存活能力是报道的非孢子形成和革兰氏阴性细菌中最高的之一,并且基于基于 H(2)O(2)(过氧化氢酶和烷烃氢过氧化物还原酶)的酶降解、能量管理(ATP 合酶和醇脱氢酶)和膜组成的调节的贡献。耐辐射不动杆菌 50v1 的生化和生存特征共同支持其在火星上的潜在持久性(假设火星奥德赛轨道飞行器发生意外或计划的表面着陆),这反过来又可能损害未来生命探测任务的科学完整性。