Graduate Program of Neuroscience, University of Iowa, Iowa City, IA 52242, USA.
Neuroscience. 2012 Nov 8;224:160-71. doi: 10.1016/j.neuroscience.2012.08.023. Epub 2012 Aug 20.
DYT1 dystonia is a dominantly inherited, disabling neurological disorder with low penetrance that is caused by the deletion of a glutamic acid (ΔE) in the protein torsinA. We previously showed that torsinA(wt) is degraded through macroautophagy while torsinA(ΔE) is targeted to the ubiquitin-proteasome pathway (UPP). The different catabolism of torsinA(wt) and (ΔE) potentially modulates torsinA(wt):torsinA(ΔE) stoichiometry. Therefore, gaining a mechanistic understanding on how the protein quality control machinery clears torsinA(ΔE) in neurons may uncover important regulatory steps in disease pathogenesis. Here, we asked whether F-box/G-domain protein 1 (FBG1), a ubiquitin ligase known to degrade neuronal glycoproteins, is implicated in the degradation of torsinA(ΔE) by the UPP. In a first set of studies completed in cultured cells, we show that FBG1 interacts with and influences the steady-state levels of torsinA(wt) and (ΔE). Interestingly, FBG1 achieves this effect promoting the degradation of torsinA not only through the UPP, but also by macroautophagy. To determine the potential clinical significance of these findings, we asked if eliminating expression of Fbg1 triggers a motor phenotype in torsinA(ΔE) knock in (KI) mice, a model of non-manifesting DYT1 mutation carriers. We detected differences in spontaneous locomotion between aged torsinA(ΔE) KI-Fbg1 knock out and control mice. Furthermore, neuronal levels of torsinA were unaltered in Fbg1 null mice, indicating that redundant systems likely compensate in vivo for the absence of this ubiquitin ligase. In summary, our studies support a non-essential role for FBG1 on the degradation of torsinA and uncover a novel link of FBG1 to the autophagy pathway.
DYT1 型肌张力障碍是一种显性遗传、致残性神经疾病,其外显率低,是由蛋白 torsinA 中谷氨酸(ΔE)缺失引起的。我们之前表明,torsinA(wt) 通过巨自噬降解,而 torsinA(ΔE) 则被靶向泛素-蛋白酶体途径(UPP)。torsinA(wt) 和 (ΔE) 的不同代谢可能调节 torsinA(wt):torsinA(ΔE) 化学计量。因此,深入了解蛋白质质量控制机制如何清除神经元中的 torsinA(ΔE),可能会揭示疾病发病机制中的重要调节步骤。在这里,我们想知道 F-box/G-domain 蛋白 1(FBG1),一种已知可降解神经元糖蛋白的泛素连接酶,是否参与 torsinA(ΔE) 通过 UPP 的降解。在我们完成的一组培养细胞研究中,我们表明 FBG1 与 torsinA(wt) 和 (ΔE) 相互作用并影响其稳态水平。有趣的是,FBG1 通过 UPP 和巨自噬促进 torsinA 的降解,从而达到这种效果。为了确定这些发现的潜在临床意义,我们询问消除 Fbg1 的表达是否会在 torsinA(ΔE) 敲入 (KI) 小鼠中引发运动表型,这是一种非显性 DYT1 突变携带者的模型。我们检测到老年 torsinA(ΔE) KI-Fbg1 敲除和对照小鼠之间自发运动的差异。此外,在 Fbg1 缺失小鼠中,神经元 torsinA 的水平没有改变,这表明在体内,冗余系统可能会补偿这种泛素连接酶的缺失。总之,我们的研究支持 FBG1 在 torsinA 降解中的非必需作用,并揭示了 FBG1 与自噬途径的新联系。